[The original publication is available at www.springerlink.com
(http://www.springerlink.com/content/0040u2r417183102/)

A Method for Analyzing Code Homology in
Genealogy of Evolving Software

Masatomo Hashimoto! and Akira Mori?

1 AIST Tokyo Waterfront, 2-3-26 Aomi, Koto-ku, Tokyo 135-0064, Japan,
m.hashimoto@aist.go. jp
2 AIST Tokyo Akihabara Site, 1-18-13 Sotokanda, Chiyoda-ku,
Tokyo 101-0021, Japan, a-mori@aist.go. jp

Abstract. A software project often contains a large amount of “homolo-
gous code”, i.e., similar code distributed in different versions or “species”
sharing common ancestry. Homologous code fragments are prone to incur
additional maintenance efforts since changes of their common characters
must be replicated on each code fragment to keep the system consis-
tent or up to date. We propose an automated method for detecting and
tracking homologous code in genealogy of evolving software using fine-
grained tree differencing on source code. Locating homologous code and
tracking its course of change would help software developers/maintainers
to better understand the source code and to detect/prevent inconsistent
modifications that may lead to latent errors. To show the capability of
the method, the results of experiments on several large-scale software
are reported including BIND9 DNS servers, a couple of Java software
systems jEdit and Ant, and Linux device drivers.

1 Introduction

A large software system often contains a large number of similar code fragments
across many versions or branches. They are typically introduced when the code
is inherited from previous versions, duplicated for programming convenience,
and patched to correct common defects. We call such correspondence in the
code descended from a common ancestry homology of code, by analogy with
biology [1].

Homologous code fragments or homologues are similar code fragments dis-
tributed in different versions or “species” sharing common ancestry. They may
evolve in uniform or divergent manner as the development proceeds. If the evo-
lution is uniform, it is likely that there exists a common programming logic and
additional maintenance efforts are necessary [2] since further changes must be
replicated on each code fragment to keep the system consistent. Even when the
evolution is divergent, common characters of the code remain in later develop-
ments [3].

Locating a homologue code and tracking its course of change would help
software developers/maintainers to better understand the source code and to
detect/prevent inconsistent modifications that may lead to latent errors. The

M.Hashimoto
The original publication is available at www.springerlink.com
(http://www.springerlink.com/content/0040u2r417183l02/)

M.Hashimoto

task can be difficult even when a versioning system such as CVS is in place to
record change descriptions since such information is too coarse to compare and
usually not associated with reference to concrete source code entities such as
functions and methods|2].

Code clone is a well-researched topic relating to code homology. Many al-
gorithms and tools have been proposed for detecting code clones [4]. However,
those methods are not well-suited for analyzing how clone regions evolve over
time since maintaining clone relations is difficult when regions go through dif-
ferent modifications and do not remain the same. Clone detection must be per-
formed on each version and discovered clone regions must be tracked in the later
versions. To distinguish newly introduced clone regions from those lasting from
previous versions involves an awkward task of adjusting similarity thresholds by
heuristics [3]. The method for tracking cloned code is relatively less explored
with several exceptions [5, 3, 6-8] despite its practical importance.

In this paper, we propose an automated
method for detecting and tracking homo- .
logues in genealogy of evolving software us- cioning ,*
ing a fine-grained tree differencing tool called .
Diff/TS[9] for source code. The method also
reconstructs semantic change histories from
raw edit sequences computed by differenc-
ing on abstract syntax trees and identifies
inconsistent changes by comparing change orthologues @%

histories of homologues. By following ideas \T \T
from biology, we classify homology into three
Fil

| paralogues

categories: orthology, paralogy, and zenology.
Orthology describes homology arising from

xenologues
branching activity, xenology from exchange of g
code across different branches, and paralogy SR
from duplication in a single branch. See Fig. 1 import/merging/patch
for illustration. Fig. 1. Types of Code Homology

We implemented procedures for analyzing
homologues. To show the capability of the method, the results of experiments on
several large-scale software are reported including BIND9 DNS servers, a couple
of Java software systems jEdit and Ant, and Linux device drivers. Xenology is
investigated with BIND9 and paralogy is investigated with jEdit, Ant, and Linux
device drivers.

The results shows that the proposed method is efficient enough to analyze the
device drivers in 32 versions of Linux from 2.6.0 to 2.6.31, each of which consists
of millions of lines of source code. Several inconsistencies in Linux serial drivers
have been detected which violate a development policy concerning kernel locking.
It is also shown that the method produces better analysis results compared to
existing code clone trackers. In fact, the system could track not only all clone
regions reported in the previous literature [5,6,3,7,8], but also regions that
escaped from previous analysis [6].

To summarize, the contributions of the paper are:

— proposal of the notion of code homology to categorize similar code in geneal-
ogy of evolving software,

— development of an automated method for detecting and tracking homologues,
and

— development of an automated method for reconstructing and comparing fine-
grained change histories for homologues.

The rest of the paper is organized as follows. Prerequisites for tree differencing
used in code homology analysis are explained in Sect. 2. Section 3 describes the
method for code homology analysis. The results of the experiments is reported
in Sect. 4. After related work is reviewed in Sect. 5, we conclude in Sect. 6.

2 Tree Differencing

We regard a version of a software system as a set of abstract syntax trees (ASTs)
which correspond to source files (compilation units) and also as a directory tree
which consists of source files. Tree differencing plays important role in analyzing
code homology. Code homology analysis consists of three steps: detecting ho-
mologous code, tracking homologous code, and tracking changes of homologous
code. We enumerate required functions in each step, whose details are explained
in Sect. 3.

1. Homologous code detection
(a) discovering common structures between a pair of ASTs — for orthologues
(b) differencing a pair of ASTs — for xenologues
(c) detecting code clones — for paralogues
2. Code fragment tracking
(a) mapping nodes in one AST to corresponding nodes in another AST
(b) detecting cloning activities
(c) mapping line ranges in source code to the corresponding sub-ASTs and
vice versa
3. Change history reconstruction
(a) deriving higher level descriptions from low level descriptions for changes
between a pair of ASTs

Tree differencing algorithms employed in code homology analysis are responsible
for 1-(a), 1-(b), 2-(a), and 3-(a).

A basic function of a tree differencing algorithm is to calculate a sequence
of edit operations (called edit sequences) that transforms Tj into Ty for a pair
of trees T7 and T5. The basic edit operations are label renaming, deletion, and
insertion of nodes. Some algorithms can also detect moves of subtrees. We re-
gard an edit sequence between two ASTs as difference between them. Another
basic output of the algorithm is a set of matched pairs of nodes between target
trees. We call such set of matched pairs of nodes a node map, which may be
regarded as a (partial) finite map. Note that labels of a matched pair of nodes

do not necessarily coincide. Basically, node maps are constrained to preserve the
structure of target trees up to relabeling. A common part of a couple of AST's
T1 and T with respect to a node map M is defined as a pair of sets of nodes
(dom(M),cod(M)), where dom(X) and cod(X) denote domain and codomain
of mapping X, respectively.

We can use any tree differencing algorithms or tools which satisfy require-
ments for code homology analysis. In this study, we used a tree differencing
system called Diff/TS[9]. Diff/TS extends a general tree comparison algorithm
with heuristics driven control configurable for multiple programming languages.
Diff/TS is capable of processing Python, Java, C and C++ projects, and pro-
vides all required functions but 3-(a). In addition to low level edit sequences,
higher level description of source code changes is necessary for change history
construction. We added a module for classifying changes of C programs into Ap-
proximately 80 change types defined following Fluri and Gall [2]. Change types
are defined by edit operations and syntactical information embedded in ASTs.
For example, a change type function call inserted is defined as insertion of a
subtree corresponding to function call and return value changed as some edit
operation(s) on AST node(s) in a subtree corresponding to a return value.

3 Code Homology Analysis

This section presents procedures for detecting and tracking homologous code in
a given set of branches. An overview of our key techniques for code homology
analysis is also provided.

The tree differencing algorithm allows us to distinguish between the preserved
portion (up to relabeling) and the added/deleted portion between a pair of ver-
sions, and to compute edit operations which transform one into another. We
employ a “double-differencing” technique to identify xenologues. First, we pair-
wise compute preserved portions between relative versions and conclude that the
preserved portion found closest to the most recent common ancestor represents
orthologues. Then, we compute differences between preserved portions to identify
added code fragments as xenologues. See Fig. 2 for illustration, where version A
branches into versions B and C', which then evolve into B1 and C1, respectively.
A vertical dashed line denotes difference, in which a black triangle represents
code addition and a white triangle represents code deletion. A horizontal dashed
line denotes common code segments, i.e., homologues between relative versions.
Segments that have been newly added in the homologues suggest existence of
merged or patched code, which we call xenologues (e.g., a shaded black triangle
in Fig. 2). Other segments that have disappeared from the homologues suggest
existence of individually modified code. In general, we cannot decide whether
xenologues are originated from code exchange or simultaneous patch applica-
tion without manually inspecting available documents such as change-logs or
development histories.

Paralogues, that is, code clones or duplicated code, are detected in a different
manner. For the (given) initial version of the software, we apply existing code

Fig. 2. Double-Differencing Between Branches

clone detection tools and accept the outputs as clone groups generated before
the first version. For identifying cloning activities after the first version, we first
compute added code fragments by tree differencing, and then find its potential
duplication origins in the previous versions. A common token sequence matching
algorithm is used for this.

We introduce several notations and terms needed for the rest of the paper.
The set of nodes in A is denoted by N (A). By Z(A), we denote the set of post-
order indexes of an AST A. We identify nodes with their post-order indexes. Let
v be a version of software system. We denote the set of ASTs corresponding to
source files contained in v by A(v). For a tree A and S C N (A), Als denotes the
tree obtained from A by removing all nodes that do not belong to S. We introduce
two wrapper functions of Diff/TS denoted by A for ASTs and Ay for directory
trees. For ASTs A; and A, A(A;, As) computes a triple (M, D, T), where M
denotes a node map such that M C Z(A;) x Z(Az), D a set of deleted com-
ponents, and I a set of inserted components. For versions v; and v, Ag(v1, v2)
computes (M, D, I), where M denotes a node map such that M C A(vy) x A(vs),
D a set of deleted source files, and I a set of inserted source files. Note that in-
ternal nodes (directories) are omitted from M. We extend the domain of A to
the set of versions: A(vy,vy) = {(Ay, Ae, M, D, I)|(M,D,I) = A(A;, As), where
(A1, Az) € My, (Mg, Dg, 1) = Agq(v1,v2)}.

In order to detect homologues, we compute common code structures (CCSs)
between versions. A CCS between two ASTs A; and Ay with respect to a node
map M, denoted by CCS,, (A1, Az), is defined as a pair of trees (S1,S2) where
S1 = Aildgomar) and Sz = Asz|coqar)- A CCS between two versions is defined
as a set of CCSs between ASTs which corresponds to source files matched by
Ag. We can compute a CCS between versions v; and ve by first computing
(Mg, Dg,I5) = Aqg(vi,v2), and then computing (M,D,I) = A(A;,Az) and
(A1|dom(M)a A2|cod(M))7 for each (Al,AQ) € My.

most recent common ancestor

BL @ Br
Otuwro b b Otroro

VLo

a Xnusri

Diar3isra=DQgL3ra

Ti2r3tzra=XNL3R4a

Xnure A

Dgisr7

Fig. 3. Detecting Homologues

3.1 Detecting Homologues

An orthologue is defined between versions of different branches. For a pair of
branches By, and By diverged from a common ancestor, an orthologue between
the oldest versions of By, and Bpg is defined as a CCS between the oldest ver-
sions. See Fig. 3, where Croro and Otrgro denote a CCS and an orthologue
between versions vyg and vgg of branches By, and Bgr. Once we have obtained
an orthologue between the oldest versions, orthologues between other versions
of By, and Bp is obtained by tracking the oldest orthologue. Our method of
tracking code fragments is described in Sect. 3.2.

In order to detect xenologues, we must perform differencing one more time
on CCSs. Let B, and Bp be branches that stem from a common ancestor (See
Fig. 4). For versions vy, and vgp, we compute Xn (v, vgp) which denotes the set
of xenologues between VLb and VURb- We let Ad('ULba 'URb) = (]\4'[/1,1:;31,7 DLlen ILbRb)
where Mryry = {(1,1), (5, 3)}, where nodes are indicated by indexes (by post-
order traversal). Similarly, for (via, VRra), (Via,VLb), and (VRa, Vrb), We let Mpopa =
{(1,1),(3,3)}, Mrars = {(1,2),(3,5)}, and Mgars = {(3,3)}. Among the pairs
contained in Myygrp, only (5,3) = (Arps, Ares) is able to form a commuta-
tive diagram consisting of dashed arrows in Fig. 4. Similarly in Mp,ge, only
(ALas, Arps) form a diagram. We apply A to (Ares, Ares) and (Araes, Araes) to
obtain CCSs for them. Let My, = Mpysrps and M, = M1.3rq3 be node maps
obtained from the applications, respectively. By definition, CCS,,, (Arps, Arps)
= (ALb5|dorn(Mb)7 ARb3|cod(]Mb)) and similarly we have CCSMa (ALag, ARag) =
(ALa3|dom(M.)» ARa3lcod(n,))- We let Crysrps = ArLps|dom(m,) and Crazras =
ALaSldom(Ma)' Finally, we apply A to CLaSRbS and OLbSRb3~ Let (M,D,I) =
A(Crasrbs, Crbsres). I corresponds to Xn(Arps, Agps) and D “degenerated”
homologues between Arps and Agps, denoted by Dg(Arps, Arps). Note that we

Fig. 4. Differencing Common Code Structures

can choose Agrp3|cod(n,) for Crosrbz of Arazleod(ar,) for CLazras since we ignore
the difference of node labels in the node maps.

As mentioned in the beginning of Sect. 3, it is impossible to determine the
origin of xenologues in general. For example, in Fig. 3, suppose that there exists
some a € Xnp3rs and it also exists vp3 through vr4, and vy through vrs. We
can not decide whether « is introduced by simultaneous patch application to vp3
and vg; or by copying some part from a revision between vr; and vgg to vps.

We use existing tools for identifying paralogues (code clones) in the initial
version of the given software versions. For the versions descending from the
initial versions, we use a code tracking method described in the next section for
detecting cloning activities.

3.2 Tracking Code Fragments

Once the occurrence of a homologue is discovered, we look into a code continuum
to inspect developments in the subsequent versions. A code continuum is a data
structure created by composing differencing results across versions to record
entire lifetime of a source code entity. A code continuum can be illustrated by
a set of node continua, that is, threads representing the lifetime of AST nodes
over time as in Fig. 5, where the beginning and the ending of a thread indicate
the introduction and the removal of the AST node, respectively.

A node continuum is constructed for each AST node. For the same reason
as we perform directory tree differencing, we construct a file continuum for
each source code file. Each node/file continuum stores trace information of an
AST node and a source file, respectively. A continuum for versions vy, ..., v,
is represented by a sequence of names (Ny,..., N,), where N;(0 < i < n) is
a name of the node/file in version v;. The node name is given by its index
in post-order traversal and the file name by its path name. Non-existence of

Alg.1. Continuum Construction

procedure CONSTCTM((Ty, T1,...Th), K)
K+ 0
Vi-1 Vi Vi1 for 0<i<n-—1do
M; = M(T;, Tit1)
Mapped <+ 0
for k = (No,...,N;) € K do
k < (No,..., Ni, M;(Ny))
Mapped < Mapped U {N,;}

@ X X
%{ QA end for
@ \! AN \ 10: for z € dom(M;) do
11: if © ¢ Mapped then
\ 12: K+ Ku{{e...,e,z, M;(z))}
——

Z

i times
13: end if
14: end for
Fig. 5. Code Continuum 15: end for

16: end procedure

the node/file is represented by an empty name e for convenience. An algorithm
for constructing continua is shown in Alg. 1. In the description of continuum
construction algorithm, M denotes a wrapper function of Diff/TS. For a pair of
trees T and To, M(T1,T>) computes a tree map between 77 and T5. The result
is stored in K.

Since our AST nodes contain location information such as file names, line
numbers, column positions and file offsets, continua make various analysis tasks
easy including tracking corresponding source code entities on texts and recon-
structing change sequences for a given code segment according to the results of
source code tree differencing.

3.3 Detecting Cloning Activities

While traditional clone detection
tools can discover code clones among
given sets of software versions, they do
not support tracking discovered code
clones in the subsequent versions of
software. To cope with the problem,
we rely on code continua for identi-
fying cloning activities by looking for Fig. 6. Cloning Activity Detection
the original code of cloning in the pre-

vious version by way of token based sequence matching algorithm.

Suppose that we analyze a sequence vg,v1,v2,...,v, of software versions.
Clones that exist already in the initial version vy are marked using existing
tools such as SimScan® for Java code and CCFinder [10] for C code. Cloning
activities taking place between v;_; and v; (i > 1) are identified by the following
procedure:

A B c D E source file

1. collect node continua starting from v; to form a tree 7" included in the AST
of v;,

3 http://www.blue-edge.bg/simscan/simscan_help_ri.htm

2. convert T into a sequence p of tokes by pre-order traversal,

3. compare p with token sequences obtained from ASTSs in v;_; by pre-order
traversal using an O(ND) algorithm [11],

4. compute a score for each match by (number of matched tokens)/(number of
tokens in p),

5. select the maximum score s and if it exceeds the pre-defined threshold, con-
cludes that T is cloned from v;_1.

The procedure is illustrated in Fig. 6. Note that code continua is collected
to align pre-defined boundaries such as functions, methods, and classes to form
subtrees.

3.4 Constructing and Comparing Change Histories

A change history for a code fragment is a sequence of change types obtained by
accumulating change types whose locations are contained in the location of the
fragment. We compare change histories in order to detect inconsistent changes.
We regard a pair of code fragments as inconsistently modified if the similarity
score between non-empty change histories is less than a specified threshold. The
similarity score between two change histories is defined based on the Levenshtein
distance by 2m/t, where m is the number of matches and ¢ is the total number
of change types in both histories.

4 Experiments

In this section, we present the results of code homology analysis on several open
source software to demonstrate the capability of the method. Examples include
BIND9 daemon (for xenologue detection), a couple of Java projects, jEdit? and
Ant® (for paralogue detection and tracking), and Linux kernel drivers (for change
history construction). The experiments are conducted in the following manner:

1. Fill the local software repository with revisions of target software.

2. Xenologues are calculated by double-differencing (BIND9 only) and par-
alogues are calculated by backward code matching. Code clones detected
in the first version are also treated as paralogues.

3. Paralogues are checked for inconsistent changes descending from the origin
of the paralogues, which often account for latent bugs. Checking is done at
the level of change type sequences described in Sect. 2 (except BIND9).

4. Discovered homologues and change histories go through human inspection
for validation.

We used a PC with a pair of quad-core Intel Xeon CPU (3.0GHz) with 16GB
RAM running under Linux kernel 2.6.24 for these experiments.

4 http://wuw.jedit.org/
® http://ant.apache.org/

Table 1. Sample Projects

lang. # of ver. versions # of src files kSLOC
BIND9 C 26 9.0.0 - 9.5.0-P2 767 - 1,186 153 - 260
jEdit Java 56 3.2.2 - 4.3.0prel7 279 - 532 55 - 108
Ant Java 41 1.1-1.7.1 87 - 1,220 9-125
Linux (@] 32 2.6.0 - 2.6.31 12,424 - 23,752 3,626 - 7,337
(drivers) (3,285 - 8,116) (1,778 - 4,106)

Programming languages in which analyzed source code is written, the num-
bers of analyzed versions, and versions, files, and kSLOC (comments and blank
lines are ignored) of the initial and the latest versions of the target systems are
shown in Table 1. For Linux, data for drivers subsystem are shown in paren-
theses.

4.1 BIND9

The main purpose of this case is to ascertain that our analysis can actually de-
tect xenologues corresponding to merged or patched code fragments. ISC BIND
(Berkeley Internet Name Domain) is an implementation of the Domain Name
System (DNS) protocols. As of October, 2008, three release branches of BIND9,
namely 9.2.x; 9.3.x, and 9.4.x are actively maintained. We selected 26 versions
to be analyzed. Our system detected 215 orthologues. We found that about 30%
of them are degenerating, that is, decreasing in size. This indicates that 30% of
commonly inherited code was modified in one or more branches and 70% of it is
stable for generations. The system also detected 8,948 xenologues most of which
(98.27%) are relatively small in size (< 64 nodes).

In the case of BIND?9, it is likely that xenologues are introduced by patch ap-
plications such as security patches since multiple releases have been maintained
in parallel. For example, a modification “Query id generation was cryptograph-
ically weak.” (RT#16915) is commonly included in CHANGES files contained in
releases 9.2.8-P1, 9.3.4-P1, and 9.4.1-P1. As we expected, several xenologues
in dispatch.c, out of 34 xenologues among 9.2.8-P1, 9.3.4-P1, and 9.4.1-P1,
appear to be strongly related to that modification.

4.2 jEdit and Ant

We collected 56 versions of jEdit from release 3.2.2 to 4.3prel7, and 41 versions
of Ant from release 1.1 to 1.7.1. First, we compare the paralogue (code clone)
tracking ability of our method with that of Duala-Ekoko and Robillard [6]. They
implemented a system called CloneTracker which is capable of tracking code
clones detected by clone detection tools. It identifies clone regions at the granu-
larity of code blocks using heuristics based on the structural properties, lexical
layout, and similarities of the clone region. They provided case studies of jEdit
and Ant. A clone detection tool called SimScan was used to detect code clones
in the initial versions. Then, they selected five clone groups, which were tracked
across the subsequent versions. They also manually inspected changes made in
the tracked clone groups.

jedit (3-2-2 --> 4-3-prel7) jedit (3-2-2 --> 4-3-prel7)

@
S

=
S

percentage of cloning

number of file continuums (grouped)
number of node continuums (grouped)

0 00 10 20 30 40 50 0

10 20 30 50
version (generation) version (generation)

Fig. 7. File Continua of jEdit Fig. 8. Node Continua of jEdit
(MiscUtilities.java)

We have tracked the clone groups detected by SimScan including the five
clone groups above and reconstructed change histories for them by our method.
We ran SimScan with the same settings as that of Duala-Ekoko and Robillard’s
experiment, namely volume=medium, similarity=fairly similar, and speed=fast.

Our tracking results were consistent with their results except for a clone
region that they could not track. Our system was able to track the clone region
up to the most recent version. All reported changes collected by their manual
inspection were automatically reconstructed by our change history construction
method briefly described in Sect. 3.4.

We also pairwise compared reconstructed change histories of code fragments
in tracked clone groups. We set the similarity threshold to 0.5. For lack of space,
we only show the results of Ant. 537 out of 1,078 initial clone pairs detected
by SimScan were inconsistently modified without disappearing before the latest
version, while 340 pairs disappeared before the latest version. Our system also
detected 1,247 additional clone pairs after the initial version. Among them, 272
pairs were inconsistently modified (excluding 369 disappeared clone pairs). Note
that detected inconsistent changes do not immediately account for bugs. There
is a possibility that clones are intentionally modified differently [12]. It took
our system 60 and 70 minutes to complete the whole analysis of jEdit and Ant,
respectively.

Our system can also visualize cloning activities overlaid on continua. Fig-
ures 7 and 8 show file and code (MiscUtilities.java) continua for jEdit. Each
horizontal line represents a file (node) continuum and each polygon a group of
file (node) continua that begin at the same version. In each polygon, continua are
sorted by terminating versions and colors represent the percentage of continua
generated by cloning activities in the corresponding group. We can see that a
couple of versions introduced numerous clones.

4.3 Linux Device Drivers

In this case study, we manually investigated an inconsistent change detected by
our system and made a certain contribution to an open source community. We

percentage of cloning

collected and analyzed 32 versions of Linux 2.6 kernel source code from 2.6.0 to
2.6.31. We first detected and tracked the paralogues in the whole kernel source
code. Then we constructed fine-grained change histories for the paralogues in the
drivers subsystems and manually inspected the histories to detect inconsistent
changes. The drivers subsystem is large enough as they can occupy more than
70% of modern operating systems in volume and account for the vast majority
of bugs as reported by Chou and others [13].

In order to detect initial clones in the initial version 2.6.0, we used CCFinder
with the default setting. CCFinder detected 2,851 clone pairs. We set the sim-
ilarity threshold between change histories to 0.9999, and then ran the system.
It took three days to detect and to track the whole paralogues and two days
to construct change histories for paralogues in drivers subsystems. Our system
detected 814 additional clone pairs (cloning activities) after version 2.6.0 and
1,441 and 385 inconsistently modified pairs out of the initial and the additional
clone pairs, respectively. We manually inspected inconsistent changes detected
by our system. In this experiment, only change history pairs with similarity
score more than or equal to 0.9 are inspected. It should be noted that overlook-
ing changes such as argument deleted and parameter type changed leads
to compiler errors, and hence immediate regression faults. Overlooking protocol
changes such as function call inserted, however, often causes latent errors
difficult to detect. Thus we focused on insertion of statements.

We were able to find approximately 10 inconsistent changes involving inser-
tions of function calls to lock kernel that remained in the latest version 2.6.31.
An inconsistent change involving lock _kernel detected by the system is shown
in Fig. 9, where a clone pair in synclinkmp.c and synclink_cs.c was incon-
sistently modified. Their change type sequences were mostly the same, which
means that they almost consistently co-evolved, but differ in only one change.
In this experiment, we observed a number of clone pairs that evolved almost con-
sistently. Among them, a pair of change histories that shares 178 change types
in common with a similarity score of 0.98 was discovered.

By further inspection, we found that the inconsistency relates to similar
inconsistencies observed in Linux serial drivers violates a development policy
concerning kernel locking known as BKL (big kernel lock) pushdown. The BKL
was introduced to make the kernel work on multi-processor systems. The role
of the BKL, however, has diminished over years since fine-grained locking has
been implemented throughout the kernel for better throughput. Although some
attempts to entirely remove the BKL have been made, progress in that direction
has been slow in recent years.

It was not long before the BKL accounted for a performance regression. At
last, some of the developers decided to go a step further in versions 2.6.26 and
2.6.27. They began with serial drivers. In order to remove upper-level acquisition
of the BKL in the control flows, they attempted to push the acquisition down to
the device specific code level, where they expected BKL removal to be achieved.
Indeed, numerous lock _kernel calls were (almost blindly for safety) inserted into
serial driver code including synclinkmp.c at version 2.6.26, and then the upper-

level call (in fs/char_dev.c) was removed at version 2.6.27. However, during
the pushdown, synclink cs.c was left unchanged, which led to an inconsistent
change detected by our system.

Although the inadvertency itself does not cause errors, we could promote the
BKL pushdown policy. In response to our report on the inconsistent change, the
author of synclinkmp.c pointed out that the lock kernel calls in the driver
can be safely removed. We submitted a patch removing the BKL related calls
from synclinkmp.c and its variations. It was acknowledged by the author of the
driver.

xx detected pair [1482] (historical similarity: 0.972973) **x*

ORIGIN: "linux-2.6.0/drivers/char/synclinkmp.c":1129-1172 —-
"linux-2.6.0/drivers/char/pcmcia/synclink_cs.c":2616-2659

LATEST: "linux-2.6.31/drivers/char/synclinkmp.c":1052-1096 --
"linux-2.6.31/drivers/char/pcmcia/synclink_cs.c":2439-2481

total significance of historyl: 32 (max=4)

total significance of history2: 30 (max=4)

--- 1 changes found only in "linux-2.6.0/drivers/char/synclinkmp.c":1129-1172:

@"linux-2.6.25/drivers/char/synclinkmp.c":1109-1151
@"linux-2.6.26/drivers/char/synclinkmp.c":1111-1155

[statement inserted] (significance=2)

[Statement .Expression(Expression.Call()){lock_kernel}[(<call>(lock_kernel,<args>))]]
@Definition(wait_until_sent) (1108L,0C-1167L,0C(30773-32316))
@Definition(wait_until_sent) (1124L,1C-14C(31088-31101))

Fig. 9. An Example of Inconsistent Change

5 Related Work

There is a large body of studies on code clones and related detection tools [4].
Code clone detection and source code differencing are two complementary tech-
niques for analyzing relationship among software products. Although code clone
detection tools may well be able to discover homologous code, they may not be
suitable for precisely tracking life cycles of such code in the long evolution of the
software as it requires consistently identifying changed and unchanged parts. It
usually takes awkward steps of taking difference by way of clone detection. Since
code clone detection methods can analyze clones across different and unrelated
software products, it would be an interesting topic to combine these two meth-
ods. One idea is to use clone detection tools first to reduce the size and the scope
of the problem, and then to apply tree differencing tools for detailed analysis.
Kim and others [7] proposed a method for inferring high-level description of
structural changes based on the first-order logic in order to determine method
level matches between versions of Java programs. While their method is special-
ized for Java programs, their idea of aggregating low-level description of changes
seems applicable to our system. Kim and Notkin apply clone detection tech-
niques to understand evolution of code clones [5] in Java software. They rely on
location overlapping relationship to track code snippets across multiple versions
of a program. While their analysis is simple and fast, it may not be able to extract
how such code snippets changes over time from the source code. Duala-Ekoko
and Robillard [6] proposes a code tracking method tailored for Java. Although

the method is driven by heuristics and suitable for interactive use, the lack of
precision in syntactic analysis may limit the ability of the tool. Godfrey and
Zou [14] developed a set of techniques for detecting merging/splitting of func-
tions and files in software systems. They presented a set of merge/split patterns
and employed call relationships to aid in detecting their occurrence, which are
also useful for our analysis. Aversano and others [15] proposed a method of in-
vestigating how clones are maintained over time. In order to derive evolution
patterns of clones, they rely on fast but coarse line-by-line differencing to track
clones.

In Sect. 3, we implicitly assumed that the genealogies of target software
systems are given. However, without any development history or any explicit
record of tagging or version copying operations, it may be difficult to determine
the origin of branching, notably the version from which a development branch
is duplicated. In such situations, we can reconstruct the genealogies by utilizing
tree differencing and tools for phylogeny [9].

6 Conclusion

We have proposed an automated method for analyzing code homology in geneal-
ogy of evolving software based on fine-grained tree differencing. Homologues can
be introduced through various activities: branching/forking in software projects
(orthologues), code exchange between neighboring branches such as code import/
merging and common bug-fix patches (xenologues), and code duplication within
branches (paralogues or code clones). As the development proceeds, homologues
can incur additional maintenance efforts. We have developed a method for de-
tecting and tracking such distinctive pieces of code by exploiting fine-grained
tree differencing. Detecting and tracking homologues along evolution branches
enable us to reconstruct and to compare change histories of homologues, which
leads us to detect inconsistent changes. Results of experiments conducted on sev-
eral large-scale software including BIND9 DNS servers, a couple of Java software
jEdit and Ant, and Linux device drivers have been reported to show the capability
of the method. Having scalable and precise tree differencing engines helped us
to analyze a large-scale software project such as the Linux kernel consisting of
several millions of SLOC.
Future work includes the following:

1. to improve processing speed by further exploiting parallelism and by elimi-
nating redundant computation,

2. to build a database for efficiently storing and retrieving various (intermedi-
ate) results computed by the system, together with comprehensive graphical
user interface, and

3. to apply our analysis to:

(a) change pattern mining and future modification prediction,

(b) language-aware merging, and

(c) the concrete problem of generating generic patches [16] that cover wide
range of Linux device drivers.

References

10.

11.

12.

13.

14.

15.

16.

. Fitch, W.: Homology a personal view on some of the problems. Trends in Genetics

16(5) (May 2000) 227-231

Fluri, B., Gall, H.C.: Classifying change types for qualifying change couplings.
In: ICPC ’06: Proceedings of the 14th IEEE International Conference on Program
Comprehension. (2006) 35-45

Kim, M., Notkin, D.: Program element matching for multi-version program anal-
yses. In: MSR ’06: Proceedings of the 2006 international workshop on Mining
software repositories. (2006) 58—64

Roy, C.K., Cordy, J.R., Koschke, R.: Comparison and evaluation of code clone
detection techniques and tools: A qualitative approach. Sci. Comput. Program.
74(7) (2009) 470-495

Kim, M., Sazawal, V., Notkin, D., Murphy, G.: An empirical study of code clone
genealogies. In: ESEC/FSE-13: Proceedings of the 10th European software engi-
neering conference held jointly with 13th ACM SIGSOFT international symposium
on Foundations of software engineering. (2005) 187-196

Duala-Ekoko, E., Robillard, M.P.: Tracking code clones in evolving software. In:
ICSE ’07: Proceedings of the 29th International Conference on Software Engineer-
ing. (2007) 158-167

Kim, M., Notkin, D., Grossman, D.: Automatic inference of structural changes for
matching across program versions. In: ICSE ’07: Proceedings of the 29th interna-
tional conference on Software Engineering. (2007) 333-343

Reiss, S.P.: Tracking source locations. In: ICSE ’08: Proceedings of the 30th
international conference on Software engineering. (2008) 11-20

Hashimoto, M., Mori, A.: Diff/TS: A tool for fine-grained structural change anal-
ysis. In: WCRE ’08: Proceedings of the 15th Working Conference on Reverse
Engineering. (2008) 279-288

Kamiya, T., Kusumoto, S., Inoue, K.: Ccfinder: A multilinguistic token-based code
clone detection system for large scale source code. IEEE Transactions on Software
Engineering 28(7) (2002) 654-670

Myers, E.ZW.: An O(ND) difference algorithm and its variations. Algorithmica
1(2) (1986) 251-266

Kapser, C., Godfrey, M.W.: ”cloning considered harmful” considered harmful. In:
WCRE ’06: Proceedings of the 13th Working Conference on Reverse Engineering.
(2006) 1928

Chou, A., Yang, J., Chelf, B., Hallem, S., Engler, D.: An empirical study of operat-
ing systems errors. In: SOSP ’01: Proceedings of the eighteenth ACM symposium
on Operating systems principles. (2001) 73—-88

Godfrey, M.W., Zou, L.: Using origin analysis to detect merging and splitting of
source code entities. IEEE Transactions on Software Engineering 31(2) (2005)
166-181

Aversano, L., Cerulo, L., Di Penta, M.: How clones are maintained: An empirical
study. In: CSMR ’07: Proceedings of the 11th European Conference on Software
Maintenance and Reengineering. (2007) 81-90

Padioleau, Y., Lawall, J.L., Muller, G.: Understanding collateral evolution in linux
device drivers. In: EuroSys ’06: Proceedings of the 1st ACM SIGOPS/EuroSys
European Conference on Computer Systems 2006. (2006) 59-71

