
Extracting Facts from Performance Tuning History
of Scientific Applications for Predicting Effective

Optimization Patterns
Masatomo Hashimoto, Masaaki Terai, Toshiyuki Maeda and Kazuo Minami

RIKEN Advanced Institute for Computational Science
Kobe, Hyogo 650-0047, Japan

Emails: {m.hashimoto,teraim,tosh,minami kaz}@riken.jp

Abstract—
To improve performance of large-scale scientific applications,

scientists or tuning experts make various empirical attempts
to change compiler options, program parameters or even the
syntactic structure of programs. Those attempts followed by
performance evaluation are repeated until satisfactory results
are obtained. The task of performance tuning requires a great
deal of time and effort. On account of combinatorial explosion
of possible attempts, scientists or tuning experts have a tendency
to make decisions on what to be explored just based on their
intuition or good sense of tuning. We advocate evidence-based
performance tuning (EBT) that facilitates the use of database of
facts extracted from tuning histories of applications to navigate
the search space. However, in general, performance tuning is
conducted as transient tasks without version control systems.
Tuning histories may lack explicit facts about what kind of
program transformation contributed to the better performance or
even about the chronological order of the source code snapshots.
For reconstructing the missing information, we employ a state-
of-the-art fine-grained change pattern identification tool for in-
ferring applied transformation patterns only from an unordered
set of source code snapshots. The extracted facts are intended
to be stored and queried for further data mining. This paper
reports on experiments of tuning pattern identification followed
by predictive model construction conducted for a few scientific
applications tuned for the K supercomputer.

I. INTRODUCTION

For computational scientists that conduct large-scale sci-
entific computations on supercomputers, application perfor-
mance tuning is essential to make full use of the available
computing resources and hence to maximize their scientific
results [1]. To improve the performance (or execution time,
code size, and power consumption) of application programs,
scientists themselves or performance tuning experts make
various empirical attempts to change compiler options, to
change program parameters, or even to transform the programs
without changing their semantics. Those attempts followed by
performance evaluation are repeated until satisfactory results
are obtained.

The process of performance tuning still remains more or less
manual and requires a great deal of time and effort, although
a number of studies on auto-tuning systems are conducted [2].
Auto-tuning systems rely on empirical techniques, which
evaluate possible implementations of a computation to spot
the best one in an automated manner. However, it suffers from

combinatorial explosion of the search space. For example,
approximately a hundred of flags for performance tuning are
available in the GNU compiler collection (GCC) [3], which
forces us to explore an extremely large search space of possible
candidates.

Accordingly, scientists and/or tuning experts have a ten-
dency to make decisions on what to be explored just based
on their intuition or good sense of tuning. It is almost impos-
sible to teach others about the intuition or the sense unlike
knowledge of numerical algorithms, compiler optimizations,
or computer architectures.

We advocate evidence-based performance tuning (EBT)
after evidence-based medicine (EBM) [4]. While the origi-
nal EBM emphasizes teaching the practice of medicine and
improving decisions by individual physicians, EBT stresses
teaching the practice of performance tuning and improving
decisions by individual tuners. Just as EBM, EBT deprecates
intuition, unsystematic experience, and computer scientific
rationale as sufficient grounds for decision making in per-
formance tuning. It facilitates the use of database of facts
extracted from tuning histories of applications to navigate the
search space.

In this study, we extract, from the given set of tuning
histories, facts about what kind of program transformation
(typically loop transformation) contributed to the better perfor-
mance. To extract such facts, we expect at least the following
data in a history:

1) a set of pairs each of which consists of a snapshot
of source code, or a source code variant, and another
variant derived directly from it,

2) program transformations applied between each pair of
source code variants, and

3) performance measurement values for each code variant.
In general, however, performance tuning is conducted as
dedicated transient tasks without version control systems. One
or more of those data may be missing since scientists/tuners
will not bother to record individual tuning details, which
indicates that even the chronological order of the source code
variants may be lost.

While the performance of code variants can be measured
with profiling tools as long as the variants are compiled and
executed, applied program transformations cannot be identified

978-0-7695-5594-2/15 © 2015 IEEE

MSR2015, Florence, Italy

Accepted for publication by IEEE. © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



in a straightforward way. We employ a state-of-the-art fine-
grained change pattern identification tool [5] for the purpose.
It is capable of identifying pre-defined program transformation
patterns applied to a code variant by comparing it with its
derivative. Even when it is not known that which variant is
derived from which, we can guess it by way of phylogenetic
trees generated by applying phylogenetic algorithms to source
code variants [6] instead of biological species or genes. Once
sufficient facts are extracted, they are stored into a database
called factbase and can be queried for further data mining
to facilitate performance tuning, for instance, by predicting
effective program transformation patterns.

To demonstrate that above mentioned techniques actually
work for non-trivial scientific applications, we conducted
experiments on a few scientific applications actually tuned for
the world’s fourth-fastest supercomputer (as of writing), the K
computer [7], [8]. The experiments are summarized as follows:

• recovering phylogenetic relationships between code vari-
ants,

• identifying applied code transformation patterns, and
• constructing classifiers for predicting effective program

tuning patterns for given source code.
Fortunately, we could access complete tuning histories of the
applications by courtesy of the authors/tuners of them and
hence we can evaluate our results by comparing them with
the actuals.

The rest of the paper is organized as follows. Section II gives
an overview of the fact extraction for EBT and its technical
backgrounds. Then, factbase construction and factbase query
are explained in Section III. A brief overview of the tuning
pattern prediction is given in Section IV and Section V
details experiments conducted for early-stage practice of EBT.
After related work and several limitations are reviewed in
Sections VI and VII, Section VIII concludes the work.

II. FACT EXTRACTION

In this study, we focus on single processor performance tun-
ing of scientific applications. In general, a task of performance
tuning of application programs consists of the following steps:

1) measuring runtime performance,
2) identifying performance bottlenecks,
3) extracting computational kernels, and
4) performing the following for each kernel:

a) measuring fine-grained runtime performance,
b) diagnosing performance problems, and
c) transforming source code of the kernel.

As is usual with performance tuning, compilable pieces of
code that are subject to tuning, called computational kernels,
or kernels for short, are extracted from the whole application
source code. To diagnose performance problems in a kernel,
more detailed and accurate performance measurements such
as cache miss rate and floating-point operations per second
for tuner-specified code regions (typically loops) are used.
Based on the diagnosis, a tuner may perform some source
code transformations (typically loop optimizations) on the

kernel code in a manner that preserves the original semantics.
Consequently, another variant of the kernel code is derived.
Step (4) above is repeated until the desired performance is
achieved, which results in a set of variant derivation graphs
that are similar to revision graphs seen in some version control
systems. A variant graph is a directed acyclic graph that
consists of a set of edges v1 → v2, where a variant v2 is
derived from another v1.

In order to facilitate EBT, we should be able to elicit
cause-and-effect relationships between applied source code
transformations and the consequent performance gain (or loss)
from factbases. Thus a factbase should contain at least the
following information:

• kernel source code,
• performance data measured for the kernel, and
• a set of pairs each of which consists of a kernel and its

variant with applied source code transformation.
However, we have learned through a preparatory study that it
is not reasonable to expect tuning experts to have been using
version control systems for performance tuning or recording
detailed history of their manual tuning effort, and therefore that
one or more items above might not be available. We employ
a method of identifying transformation patterns applied to
source code [5] assuming that at least a set of source code
variants derived from an original kernel is available. For each
kernel, the identification process is divided into the following
steps:

1) Parsing source code variants to obtain their abstract
syntax trees (ASTs).

2) Comparing the ASTs to obtain pairwise editorial dis-
tances.

3) Inferring a phylogenetic tree of code variants based on
the distances.

4) Comparing (again) the ASTs based on the topology
of the phylogenetic tree to infer fine-grained structural
changes made to each code variant.

5) Storing the ASTs with the inferred fine-grained changes
into a factbase.

6) Identifying transformation patterns by querying the fact-
base.

Note that steps (2) and (3) are not necessary if the variant
derivation graph is known in advance.

A. Parsing Fortran Code
For writing large-scale scientific applications, Fortran, a pio-

neer of the high-level programming languages, is still actively
used. After a few months survey of available Fortran parsers,
we made up our mind to develop our own Fortran parser from
scratch since they lack one or more of the following:

• capability of parsing dialects and language extensions
made locally by compiler vendors such as IBM, PGI,
and Intel,

• capability of parsing directives such as C preprocessor,
OpenMP1, XLF (IBM), and OCL (Fujitsu),

1http://openmp.org/



Fig. 1. Comparing Source Code

• tolerance for partial parsing failure, and
• capability of parsing incomplete program fragments.
Our parser is based on the several standards: FORTRAN 77,

Fortran 90, Fortran 95 and in part Fortran 2003 and Fortran
2008. It is capable of parsing above mentioned language
extensions and compiler directives. It can run in keep-on-
parsing mode since we made use of Menhir2, a LR(1) parser
generator, with error recovery function enabled to build the
core of the parser. It is also capable of parsing program
fragments such as sequences of statements.

By virtue of the unusual features explained above, we can
parse application programs without hooking the build process
of the applications, which means that we can parse source files
in any order without taking care of the dependencies among
them. Instead, some dependencies caused by INCLUDE lines,
#include directives, and USE statements may hinder the
parser from determining types of some syntactic entities. As a
result, AST nodes such as array elements, substrings, function
references, or structure constructors can be left ambiguous. For
example, since both an array access and a function reference
are written in a form like a(x), the type of a is necessary to
disambiguate the entity a(x).

The parser is intensively tested for numerous applications
including Gaussian3 and EigenExa4. The number of tested
source files amount to more than 20,000, the source lines
of code (blank lines and comment lines excluded) more
than 6,600,000, and the number of AST nodes more than
62,000,000. Although about 6% of the AST nodes are left
ambiguous by our parser, we can disambiguate them later by
resolving dangling references in a factbase.

B. Comparing ASTs
We prefer node-by-node comparison rather than line-by-line

comparison because the former can give us more detailed
information about the changes as seen in Figure 1. In the
figure, a code snippet at the top left is modified to yield
another at the top right. You will immediately see that line-
by-line text comparison tells us almost nothing about the
structural changes other than a few editorial operations on

2http://cristal.inria.fr/˜fpottier/menhir/
3http://www.gaussian.com/
4http://www.aics.riken.jp/labs/lpnctrt/EigenExa e.html

some lines. On the other hand, a series of changes made to an
AST is represented as a sequence of editorial operations with
additional move operation on AST nodes. It tells us far more
than in the node-by-node case. A couple of ASTs at the bottom
are obtained by parsing a couple of the snippets at the top,
respectively. Note that AST nodes are enriched with their syn-
tactic categories such as “statement” and “expression” while
parsing. Then comparing the ASTs results in the following
information about the structural changes:

• inversion of the condition-part of the if-statement,
• interchange of the then-part and the else-part, and
• insertion of a function call at the right hand side of an

assignment.
We use a fine-grained change analysis tool Diff/TS that

is based on fine-grained tree differencing on ASTs [6] for
identifying structural changes made to code variants. Diff/TS
calculates for a given pair of ASTs a sequence of editorial
operations, called an edit sequence, that transforms an AST
into another. Diff/TS is capable of detecting moves of con-
nected node groups in addition to the basic edit operations:
relabeling, deletion, and insertion of nodes. While calculating
edit sequences, Diff/TS also computes dissimilarity or edit
distance between a pair of ASTs based on the number of
editorial operations contained in the edit sequence. See our
previous paper [6] for more detail.

C. Generating Phylogenetic Tree of Code Variants
Suppose that we have a tuning history that consists of only

an unordered and unstructured set of code variants derived
from an original code. We can naively perform pairwise
comparisons among the variants in order to extract trans-
formation patterns by storing the fine-grained changes into
a factbase, and then querying the factbase for the patterns.
However, this strategy is obviously inefficient in terms of
time and disk space. To reduce the size of a factbase and the
number of the factbase queries, we infer the chronological
precedence for each pair of the code variants in order to
filter out the chronologically impossible pairs. We construct
a phylogenetic tree rooted at the original kernel code [6] to
infer the chronological order of the variants based on the tree
topology.

We rely on distance-matrix methods to construct phyloge-
netic trees. Distance-matrix methods are originally used in
phylogeny to produce a phylogenetic tree based on a matrix
of pairwise genetic distances between biological species or
genes. Since they depend only on “distances”, we can apply
them to code variants by using distances between ASTs instead
of genetic distances. In this study, we employ an established
phylogenetic distance-matrix method called weighted least
squares method by Fitch and Margoliash [9].

Once we have obtained a distance matrix by pairwise
comparison of ASTs, we feed the matrix to a phylogenet-
ics software package that supports Fitch-Margoliash such as
PHYLIP5. It will produce a phylogenetic tree in a conventional

5http://evolution.genetics.washington.edu/phylip.html



Fig. 2. A Phylogenetic Tree

bifurcating form as seen in Figure 2, where the horizontal lines
reflect the distances between tree nodes. The leaves correspond
to code variants and the internal nodes (numbered 1 through
4) correspond to imaginary ancestor variants.

From the possible pairs of variants, we filter out pairs of
variants (v0, v1) that satisfy the following condition:

distance(mrca, v0) ≥ distance(mrca, v1),

where mrca be the most recent common ancestor of v0 and
v1, and distance(x, y) denotes the distance between x and y.
This condition halves the variant pairs. For example, a variant
pair (variant4, variant1) in the tree in Figure 2 is filtered out,
because variant1 is closer to the most recent common ancestor
“2”. This means that variant1 likely precedes variant4.

D. Identifying Code Transformation Patterns
Since typical performance bottlenecks of scientific appli-

cations lie in loops, we mainly focus on identifying loop
transformations. We give brief explanations for several basic
loop transformations.
Loop Fission Loop fission divides a loop into multiple loops
with the same iteration range. This transformation can reduce
register spilling in a large loop body, while it can increase
loop overheads. If the original loop has data dependencies
between individual iterations, this can aid an optimizing
compiler to perform software pipelining and to generate
SIMD instructions by isolating the dependent part as another
different loop.

Loop Fusion Loop fusion is the opposite of loop fission,
which explicitly reduces loop overheads. Although this can
improve temporal and spatial locality of data references, L1-
data cache thrashing and register spilling arise according to
the size of the combined loop body. The lack of available
registers may also prevent an optimizing compiler from
performing optimizations such as software pipelining.

Loop Unrolling Loop unrolling reduces the number of loop
iterations by replicating the body of loops. Thus, it is effective
for a loop whose body is too small to ignore the loop
overheads. In addition, loop unrolling is also beneficial in
the sense that it makes the body of loops larger, hence in-
creases the chance of (automatic) vectorization and/or SIMD
parallelization, with the trade-off between the increase and
the risks of instruction cache overflow and register spills.
One important factor when applying loop unrolling is how
many times should we replicate a loop body because it greatly

Fig. 3. A Code Transformation Pattern (Loop Fusion)

affects the performance of the unrolled loops. It should be
noted that, in this work, we do not try to find the optimal
number of replication, but rather find loops that should be
unrolled. Finding the optimal number can be solved by, for
example, ordinary automatic performance tuning approaches,
and it is beyond the scope of this work, although it seems
possible to integrate this work with the approaches.

Array Merging Array merging merges two or more arrays of
the same size into one single array. Array merging can reduce
data cache misses if the arrays to be merged are accessed in a
similar pattern in a loop, because it can greatly improve data
access locality. In addition, array merging is also effective
when considering (automatic) vectorization and/or SIMD
parallelization.

Array Shape Change Array shape change permutes the di-
mensions of a multidimensional array in order to reduce data
cache misses. Thus, array shape change may be effective
when a multidimensional array is accessed with a stride that
is larger than the size of data cache (and/or line) in a loop.
It is also beneficial when considering vectorization and/or
SIMD parallelization, in the same way as array merging.

We identify source code transformation patterns only from a
pair of source code variants. Suppose that we have a base code
variant and its derivative. In order to identify transformation
patterns applied to the base code, we make use of the ASTs
and an edit sequence obtained by comparing them. Figure 3
illustrates how “loop fusion” can be described in terms of AST
and edit sequence. From the ASTs, we can conclude that there
are two original loops in the left code snippet and there is a
target loop in the right code snippet, where the three loop
controls are the same. From the edit sequence, we can also
conclude that there is an unchanged statement in one of the
original loops, that one of the original loops is deleted, and
that a statement in the deleted loop is moved to the target loop.

III. FACTBASE: DATABASE OF FACTS

We intend to make detailed information extracted from per-
formance tuning efforts available in a way that is independent
of specific tools, platforms, and programming languages to
facilitate EBT. To achieve this, we make use of Semantic
Web6 technologies, which aim at describing, publishing, and
obtaining relationships between things on the Web. We explain
basic ideas of factbase construction and analysis by way of
factbase queries in the following.

6http://www.w3.org/standards/semanticweb/



A. Facts and Ontologies
A fact about things in performance tuning is described as a

triple of subject, predicate (also called property), and object
following the Resource Description Framework7 (RDF). Both
subjects and objects may be entities in performance tuning
such as performance data, applied transformations, and source
code entities (e.g. files, functions/methods, and statements). A
predicate/property denotes a binary relation between a couple
of entities or between an entity and its attribute. In the latter
case, objects may be literals. For example,

(e, name,"foo")

represents a fact that an entity e has a name foo. Kinds of
entities and predicates such as “variable” and “name” above are
specified by what is called vocabularies or ontologies. Ontolo-
gies define concepts and relationships used for describing facts
about performance tuning. We have designed the following
ontologies using the OWL ontology language8:
PA An ontology for performance analysis, where subclasses
of pa:PaData will be defined for independent performance
analysis tools.

TUNE An ontology for performance tuning patterns that
consists of loop transformations and others.

VER An ontology for versions. A code variant is designated
by an instance of ver:Variant.

CHG An ontology for source code changes in terms of AST
obtained by parsing source code.

SRC A core ontology for source code entities independent of
specific programming languages.

FORTRAN An ontology for Fortran language that defines
a subclass of src:TextEntity. The classes of Fortran entities
are defined based on Fortran language specifications such
as FORTRAN 77, Fortran 90, and other dialects.

In Figure 4, the hierarchy of conceptual classes of the on-
tologies is shown. In OWL, a class is defined as a subclass
of owl:Thing. We disambiguate names of conceptual classes by
prefixing namespaces to names as owl:Thing or src:Entity. We
use namespaces listed in Table I throughout the rest of the
paper.

Prefix Meaning
rdf: Resource Description Framework

rdfs: RDF Schema
owl: OWL Web Ontology Language
src: Core source code entity

f: Fortran source code entity
chg: Things related to source code changes
ver: Things related to versioning
pa: Things related to performance analysis

t: Things related to performance tuning
TABLE I

NAMESPACE PREFIXES

In addition to the classes, we also have defined predicates
for each ontology. There exist two types of predicates in OWL:

7http://www.w3.org/RDF/
8http://www.w3.org/standards/techs/owl#w3c all

Predicate Domain Range
f:inProgramUnit f:Entity f:ProgramUnit
⊢ f:inMainProgram f:Entity f:MainProgram

f:name f:Entity rdfs:Literal
TABLE II

PREDICATES FOR FORTRAN ONTOLOGY (EXCERPTS)

Fig. 4. Classes for Ontologies (Excerpts)

object properties, which are the relations between instances
of conceptual classes, and datatype properties, which are
relations between instances and RDF literals or possibly values
of XML schema datatypes9. A predicate is defined in OWL
as a subproperty of owl:ObjectProperty or owl:DatatypeProperty.

Table II shows excerpts from predicates defined in FOR-
TRAN. The first two predicates are object properties and the
rest is a datatype property. A predicate f:inMainProgram is a
subproperty of f:inProgramUnit. The domain and the range of a
predicate are also specified in OWL.

According to the RDF data model, a set of facts form a
directed graph, where each triple is represented by a graph
fragment s p−→ o. Figure 5 depicts an example of a fact graph,
where p, c, and d denote source code entities that designate
a main-program, a do-construct (or a loop), and a do-stmt,
respectively. As seen in the graph, a predicate rdf:type is used
to specify conceptual classes of entities. Note that a predicate
src:parent from SRC defines parent-children relationships in
terms of ASTs.

CHG provides predicates partially listed in Table III.
Figure 6 illustrates facts of AST changes that constitute “loop

9http://www.w3.org/XML/Schema/

Fig. 5. A Fact Graph



Predicate Domain Range
chg:mappedTo src:Entity src:Entity
⊢ chg:mappedEqTo src:Entity src:Entity
⊢ chg:mappedNeqTo src:Entity src:Entity

chg:deletedOrPruned src:Entity src:Entity
⊢ chg:deletedFrom src:Entity src:Entity
⊢ chg:prunedFrom src:Entity src:Entity

chg:insertedOrGrafted src:Entity src:Entity
⊢ chg:insertedInto src:Entity src:Entity
⊢ chg:graftedOnto src:Entity src:Entity

chg:movedTo src:Entity src:Entity
TABLE III

PREDICATES FOR AST CHANGE ONTOLOGY (EXCERPTS)

Fig. 6. Facts of AST Changes

fusion”, where AST nodes are labeled with the corresponding
line numbers or line number ranges and AST edges are
indicated by dashed lines. Note that each of DO statements
is continued by the “&” symbol to put its loop control on the
next line. The meanings of the predicates shown in Table III
are explained below in terms of AST changes, where examples
are taken form Figure 6.

• A fact (e, chg:mappedTo, e′) means that a node e has
a corresponding node e′ in another AST. In a con-
crete term, e is either unchanged, relabeled or moved
to be e′. When e is relabeled (e.g. "P"), it implies
another fact (e, chg:mappedNeqTo, e′), otherwise it implies
(e, chg:mappedEqTo, e′) (e.g. a subgraph that contains a pair
of loop nodes).

• A fact (e, chg:deletedFrom, e′) means that a node e is deleted
(e.g. the second loop in P) from its parent which cor-
responds to a node e′ (e.g. 1-5) in another AST. The
predicate chg:prunedFrom is used instead of chg:deletedFrom

when a whole subtree rooted at e is deleted.
• A fact (e, chg:insertedInto, e′) means that a node e is inserted

to be a child of a node which node e′ in another AST
corresponds to. The predicate chg:graftedOnto is used instead
of chg:insertedInto when a subtree rooted at e is inserted.

• A fact (e, chg:movedTo, e′) means that a node e is moved
to be e′ (e.g. b(i)=2) in another AST.

B. Representing Source Code Entities

Once ontologies are defined, we create instances of the
defined conceptual classes to describe facts about performance
tuning. Since Semantic Web technologies use Internationalized

Resource Identifiers (IRIs)10 to identify things on the Web, we
must associate an IRI with each entity. Among things related to
performance tuning such as performance data, transformation
patterns, and source code fragments, we here focus on source
code entities.

As we aim to facilitate collaborative efforts in performance
tuning, we are led to an idea of representing source code
entities by textual regions of source files [10]. Since any
tools and users can point code regions of their interests,
it serves as universal and independent way of sharing and
exchanging information about source code. To be concrete,
we can associate an IRI with a source code entity by first
concatenating and then encoding the followings:

• an ID of the source file in which the entity resides,
• the start position in the file, and
• the end position in the file,

for which we can employ a hash value to identify a file, and
a triple of a line number, a column number and an offset to
specify a position in the file. For example, an IRI
http://example.com/fact/entity/FDLCO-MD5_

ed9d31a4556c7ca7dbfcf99b31fb9ec5-5_0_34_5_5_39

represents an entity (end-do-stmt) located between column 0
to 5 at line 5, and also between offset 34 to 39 in a source
file of the left code in Figure 6 which has an MD5 hash value
as encoded in the IRI.

C. Factbase Query
Conceptually, a factbase is a database filled with a set of

facts and ontologies. There are a number of commercial or
open source software systems for managing factbases with
ontologies. An RDF store is a database system specialized
for storing and managing the RDF data. In the following, we
explain some important issues arising in querying the factbase.

In order to search factbases for change patterns, we write
queries for the patterns in SPARQL11. SPARQL is a standard
query language for searching graph patterns in RDF stores.
Roughly speaking, SPARQL is an extension of SQL with
graph patterns described by a set of triples with variables.
For example, consider the following query that will enumerate
names of all main programs in the factbase.
SELECT DISTINCT ?name WHERE {

?prog a f :MainProgram ;
f :name ?name .

}

This query instructs the RDF store to find fact graphs matching
the pattern

f:MainProgram
rdf:type←−−−− ?prog

f:name−−−−→ ?name

and report values for specified variables. The query contains a
graph pattern in the WHERE clause, where identifiers prefixed
by “?” denote query variables. A graph pattern is essentially
a set of triples written in the format

subject predicate object .

10http://www.ietf.org/rfc/rfc3987.txt
11http://www.w3.org/TR/sparql11-query/



that may contain abbreviation symbol “a” for rdf:type. Consec-
utive triples that share a subject can also be written as

subject predicate object ;
...

...
predicate object .

Note that predicates and ontology classes are prefixed. Map-
pings from prefixed names to IRIs which appear in the head
of normal SPARQL queries are omitted for brevity.

IV. PREDICTING TUNING PATTERNS

This section explains how we predict effective tuning pat-
terns by means of statistical classification techniques based
on factbases. In this work, we rely on supervised learning
to classify a code fragment according to its potential tuning
pattern that may improve its performance. Supervised learning
is a kind of machine learning tasks that uses known set of
examples called training set to construct predictive models.
For predicting effective performance tuning, we make use of
an actual result of performance tuning as an example data, that
is, a pair of an extracted feature of a code fragment and the
actual tuning pattern adopted to improve the performance of
the code.

We represent a source code feature as an n-dimensional
vector of real numbers, called feature vector. This means that
we characterize a code fragment by n attributes. As an feature
vector of a code fragment, we can employ performance data
measured for the code fragment such as cache miss rate and/or
code metrics such as the maximum number of loops in the
code fragment. A tuning pattern, which is a set of m pre-
defined primitive code transformation patterns, is represented
as an m-dimensional vector of 0 or 1, called tuning pattern
vector. A training set is a set of examples {(x, t)|x ∈ Rn, t ∈
{0, 1}m}, where x and t are feature vector and tuning pattern
vector, respectively. By applying a classification algorithm we
obtain a classification function c ∈ C : Rn → {0, 1}m that
predicts c from x.

V. EXPERIMENTS

In this section, we report on our early-stage practice of EBT
applying the methods presented in the previous sections. As
sample application programs, we could use the following:

• a set of 65 very small programs for examining basic loop
optimization patterns, called Tuning Catalog,

• a kernel program, called MG, that is a component of
the NAS Parallel Benchmarks [11] for evaluating parallel
supercomputers, and

• a simulation software suite for a global cloud resolving
model, called NICAM [12], [13], [14].

All of these were written in Fortran and actually tuned for
the K computer [7], [8] by the software development team of
RIKEN AICS including the second and the last authors. Brief
descriptions of the applications are in order.
Tuning Catalog As a training set of our predictive analysis,
we created Tuning Catalog, which is a set of small programs

Name Variants SLOC (avg.)
Tuning Catalog 2×65 3089 (47)
MG 4 6957 (1739)
NICAM (diffusion) 20 7329 (366)
NICAM (div2rev) 30 21540 (718)
NICAM (divdamp3D) 18 5965 (331)
NICAM (divergence) 13 1823 (140)
NICAM (gradient) 10 3313 (331)
NICAM (nsw6) 9×3 27316 (2635)
NICAM (radiation) 3 14526 (4842)

TABLE IV
SAMPLE SCIENTIFIC APPLICATIONS

that represent various optimization approaches that appear
in typical compiler (optimization) textbooks, including mul-
tithreading with OpenMP. More specifically, it consists of
65 optimization cases, and each case consists of an original
source code and its optimized version. In addition, Tuning
Catalog also records the detailed profiling data for every op-
timization case by executing the programs (with and without
optimization) on the K computer.

MG The Multi-Grid (MG) method is a benchmark program
based on three dimensional discrete Poisson equation from
NAS Parallel Benchmarks [11]. It applies several spatial grids
in discretization of the linear equation, and interpolates values
between the grids to accelerate the convergence of solutions.

NICAM NICAM is a real world application of global weath-
er/climate simulations [12], [13], [14]. It uses a nonhydro-
static and fully compressive equation system that is dis-
cretized on an icosahedral grid arrangement. NICAM consists
of two main components. One is the fluid dynamical solver
which consists of stencil operators. The other is a set of
physical components including cloud micro physics and
atmospheric radiation. In this work, we extracted 8 kernel
programs from the two main components based on profiling
results, and attempted to analyze their optimization histories.

Table IV shows the number of code variants and source lines
of code (SLOC) computed by SLOCCount12 for each sample
application. In the table, names of the kernels are shown in
parentheses for NICAM. Note that the whole program of MG
and the programs of Tuning Catalog themselves are handled
as kernels. For nsw6, we prepared three different settings of
datasets and hard-wired parameters.

We performed factbase creation, code transformation pattern
identification, and predictive model construction for the appli-
cations. Phylogenetic tree construction was also performed for
kernels that contains more than a few code variants. Since two
of the authors are core members of the team that conducted the
tuning, we have “correct answers” for evaluating the results
of the experiments.

All experiments described in the rest of this section were
performed on a workstation with 8-core Intel Xeon processor
(3.0 GHz) with 64GB RAM.

12http://www.dwheeler.com/sloccount/



Fig. 7. A Phylogenetic Tree Generated for Variants of NICAM (div2rev)

Kernel ∥R∥/∥P∥ ∥R ∩ T∥/∥T∥
divergence 73/156 (0.47) 12/12 (1.00)
diffusion 187/380 (0.49) 21/21 (1.00)
gradient 41/90 (0.46) 9/9 (1.00)
nsw6 36/72 (0.50) 9/9 (1.00)
divdamp3D 153/306 (0.50) 21/21 (1.00)
div2rev 435/870 (0.50) 30/33 (0.91)

R: reduced pairs, P : all possible pairs, T : true pairs
TABLE V

REDUCED VARIANT PAIRS FOR NICAM KERNELS

A. Generating Phylogenetic Trees
We produced phylogenetic trees for NICAM kernels except

radiation, which has only three variants, following the procedure
mentioned in Section II-C. The required time varies from 1
minute (gradient) to 47 minutes (div2rev). A phylogenetic tree
approximates a variant derivation graph. Figure 7 gives the
largest tree among the NICAM kernels, where the final variant
is circled. We can see, at a glance, that a great deal of efforts
were made to tune div2rev, which turned out to be futile.

As shown in Section II-C, the generated phylogenetic trees
could halve the possible parent-child variant pairs by giving
chronological order. Table V summarizes the reduced set of
pairs R, the set of all possible pairs P , and the set of true
pairs T for each kernel. For the first three kernels, more than
half of the possible pairs are filtered out, since there exist
variant pairs each of which has components that are equally
distant from the most recent common ancestor. The three
false-negatives of div2rev were caused by a reversion in the
variant derivation, which degrades the accuracy of the Fitch-
Margoliash algorithm.

B. Creating Factbases
For all sample applications, the edit sequences obtained by

comparing selected parent-child pairs were stored into an RDF
store called Virtuoso13, together with the following:

13http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/

• the ontologies explained in Section III,
• the ASTs of the code variants,
• performance data of 55 measurement items measured for

each measurement block with a dedicated profiling tool
for the K computer, and

• 8 source code metrics for each measurement block,
where a measurement block is a code region delimited by a
couple of special function calls. All the above were encoded
into RDF triples. The resulting factbase contained 13,596,161
triples and occupied 460MB of disk space in total. It took
about 15 minutes to store all the triples. We stored the edit
sequences that come only from true variant derivation graphs
in order to individually evaluate the rest of the experiments.

C. Identifying Code Transformation Patterns
We can identify code transformation patterns by querying

the factbase. For example, we can write a query for loop fusion
illustrated in Figure 3 (simplified for brevity):
SELECT DISTINCT ?loop0 ?loop1 ?loop WHERE {

?loop0 a f :DoConstruct ;
f : loopControl ? lctl0 ;
f : inProgramUnit ?pu ;
chg:mappedTo ?loop .

? lctl0 src : treeDigest ?d0 .
?loop1 a f :DoConstruct;

f : loopControl ? lctl1 ;
f : inProgramUnit ?pu ;
chg:prunedFrom ?e .

? lctl1 src : treeDigest ?d1 .
FILTER (?loop1 != ?loop0 && ?d0 = ?d1)

},

where the equality of the loop controls is judged based on the
subtree digest values. We wrote queries for 45 transformation
patterns including loop fusion above and identified cumulative
891 effective optimization patterns for the sample applications.
The 5 most frequent patterns were loop unrolling (8.53%), ar-
ray dimension interchange (7.97%), loop interchange (7.07%),
loop blocking (6.62%), and loop fusion (6.40%). The identified
code transformation patterns were rendered as HTML files
(Figure 8).



Fig. 8. Code Transformation Pattern Viewer

Fig. 9. Code Transformation Pattern Viewer (Simplified View)

By manually inspecting the identified patterns, we con-
firmed that we have identified all of the actual code transfor-
mations applied to the applications without any false positives.
Inspecting a bunch of identified transformation patterns was a
demanding task. To rapidly grasp the patterns, we have newly
developed a simplified transformation pattern view (Figure 9)
based on CodeMirror14 in addition to the raw difference view
(Figure 10).

D. Constructing Predictive Models

As explained in Section IV, we have to prepare a training set
to construct a predictive model. We used the 55 measurement
items and the 8 source code metrics mentioned in the previous
section for feature vectors. A tuning pattern vector is a 45-
dimensional vector that indicates whether each of the 45

14http://codemirror.net/

Fig. 10. Code Transformation Pattern Viewer (Raw Difference View)

transformation patterns is applied or not by 1 or 0. We
extracted, by a simple query, a training set that consists of
469 instances each of which is a pair of the feature vector for
a measurement block and a tuning pattern vector that improved
the performance of the block.

We employed a data mining tool called Orange15 to con-
struct a predictive model from the training set by using BR
method based on kNN. The k nearest neighbors (kNN) algo-
rithm is one of the most basic machine learning algorithms for
single-label classification. The learner just stores the training
data, and the classifier makes predictions based on the k
nearest neighbors of the data instance being classified. The
binary relevance (BR) method is the most basic problem
transformation method for multi-label classification [15]. Note
that our tuning pattern vector has 45 different “labels” of
transformation patterns. BR transforms multi-label classifica-
tion problems into a set of single-label classification problems
to perform multi-label classification based on single-label
learning algorithms such as kNN.

The result of 5-fold cross validation of the model (k = 10)
is summarized as follows: Brier score is 0.047 (the lower
the better), global accuracy is 0.510, and mean accuracy is
surprising 0.970. Suppose that we have N instances of m-
dimensional tuning pattern vectors. Let pi and ai be the i-
th predicted and actual tuning pattern vectors, respectively.
We write xij for the j-th component of the i-th vector xi.
Brier score, or mean squared error, is defined as the average
of the sum of errors over the instances: 1

N

∑N
i=1(pi − ai)2.

Global accuracy [16] is defined as per-instance accuracy:
1
N

∑N
i=1 δ(pi,ai), where δ(x,y) equals to 1 if x = y

or 0 otherwise. Mean accuracy [16] is defined as per-label
accuracy: 1

m

∑m
j=1

1
N

∑N
i=1 δ(pij , aij), where δ(x, y) equals

to 1 if x = y or 0 otherwise.

15http://orange.biolab.si/



The result implies that the model is promising for suggesting
effective source code transformation patterns, although it is not
practical for predicting exact sets of effective patterns.

VI. RELATED WORK

As briefly explained in Section I, it is almost impossible in
general to completely automate performance tuning processes.
Nevertheless several studies have been made on supporting
performance tuning processes. Milepost GCC [3] is the first
open-source machine learning based compiler. Based on the
observation that similar programs may require similar opti-
mizations, Milepost GCC correlate static program features and
compiler optimizations to predict good compiler optimization
flags for unseen programs. It employs a public repository to
record compilation and execution statistics, which are later
used as training data for the machine learning models.

Chaimov and others [17] automated collection of perfor-
mance data annotated with metadata identifying properties of
the execution environment and the input data by integrating
TAU Performance System [18] and auto-tuning tools. They
reported how annotated performance data can be used to
learn classifiers which can be used for runtime selection of
specialized function variants and for reducing the number of
evaluations necessary for auto-tuning.

PerfExpert [19] is a tool for detecting and diagnosing perfor-
mance bottlenecks. Recently, Fialho and others [20] enhanced
it to provide suggestions for bottleneck remediation for given
applications. The rules to select and rank recommendations
are implemented as SQL queries which make use of metrics
and features of the source code of the applications. These
recommendations can be a general modification recipe for
source code or suggestions to add compiler flags.

Grebhahn and others [21] applied an approach of optimizing
software product lines [22] to optimize stencil computation
which is extensively used in scientific computations. Because
stencil computation has a lot of configuration options and
tuning parameters, it is extremely hard to automatically cal-
culate the optimal choice owing to combinatorial explosion.
They utilized SPL Conqueror [22] to predict the (nearly)
optimal choice by measuring performance of a small number
of combination of configuration options and tuning parameters.
One major difference from our work is that their target is
limited to stencil computation, while our work does not assume
a specific computing method.

There is also a number of studies concerning change pattern
identification in the context of code refactoring [23]. Demeyer
and others proposed a heuristic method based on metrics
about entities such as method/class sizes and numbers of
inherited/overwritten methods [24] to mine refactoring patterns
by comparing two versions of the program. Although it is one
of the earliest attempt at automated change pattern detection,
the method is vulnerable to renaming, unable to discriminate
multiple patterns in the same piece of code, and difficult to
fine-tune.

Prete and others proposed a refactoring reconstruction tool
called Ref-Finder [25]. Ref-Finder identifies refactoring pat-

terns between a pair of programs written in Java. Ref-Finder
expresses each refactoring pattern in terms of template logic
rules based on the facts extracted from the programs and uses
a logic programming engine to infer concrete refactoring in-
stances. However, information at the granularity of expressions
are lost during the process of fact extraction and hence fine-
grained changes, concerning local variables for instance, can
not be easily detected.

VII. LIMITATIONS

This section discusses several limitations of the methods
presented in the paper.

Since we currently employ a phylogenetic tree construction
algorithm as it is, the result for a set of code variants is
inherently limited to a “tree”, although actual code variants
can be derived more than one parent forming a “graph”. In
fact, some of the true variant derivation graphs of the NICAM
kernels (diffusion, divdamp3D, div2rev, and nsw6) contain edges
caused by multiple inheritance. For such cases, phylogenetic
network construction algorithms [26] might be applicable.

For identification of source code transformation, identifiable
patterns are limited to known ones that can be described as
factbase queries. Thus, it is possible to overlook unexpected
variations. We might be able to obtain unknown transformation
patterns by mining more source code repositories [27].

Another threat to the successful identification of code
transformations is tangled change [28], which can also easily
lower the recall rate of the identification. Although we kept
conditions in the queries as weak as possible, untangling
techniques [29] might handle the situation better.

While the constructed predictive model was unexpectedly
accurate in terms of cross-validation results, it is not based on
a satisfactory amount of examples. We are planning to extract
more facts from public domain repositories of scientific appli-
cations even though they are not dedicated tuning histories.

VIII. CONCLUSIONS

We advocate in this study evidence-based performance tun-
ing (EBT) of scientific applications to systematically support
demanding tuning tasks. To embody the concept of EBT,
we employed methods of analyzing source code repositories
for inferring fine-grained source code changes, constructing
phylogenetic trees for versions of source code, and identifying
source code change patterns based on factbase queries.

To adapt the methods for performance tuning of scientific
applications, we have developed a tolerant Fortran parser,
ontologies for Fortran programs, queries for identifying code
transformation patterns, and a neat viewer for the identified
transformation patterns.

The results of experiments of constructing performance tun-
ing factbases from minimum data and constructing prediction
models for effective tuning patterns based on the factbases
indicate that our approach is promising for practicing EBT.

ACKNOWLEDGMENT

This work was supported in part by JSPS KAKENHI Grant
Number 26540031.



REFERENCES

[1] V. R. Basili, J. C. Carver, D. Cruzes, L. M. Hochstein, J. K.
Hollingsworth, F. Shull, and M. V. Zelkowitz, “Understanding the high-
performance-computing community: A software engineer’s perspective,”
IEEE Software, vol. 25, no. 4, pp. 29–36, 2008.

[2] P. Basu, M. Hall, M. Khan, S. Maindola, S. Muralidharan, S. Rama-
lingam, A. Rivera, M. Shantharam, and A. Venkat, “Towards making
autotuning mainstream,” International Journal of High Performance
Computing Applications, vol. 27, no. 4, pp. 379–393, 2013.

[3] G. Fursin, Y. Kashnikov, A. W. Memon, Z. Chamski, O. Temam,
M. Namolaru, E. Yom-Tov, B. Mendelson, A. Zaks, E. Courtois,
F. Bodin, P. Barnard, E. Ashton, E. V. Bonilla, J. Thomson, C. K. I.
Williams, and M. F. P. O’Boyle, “Milepost GCC: machine learning
enabled self-tuning compiler,” International Journal of Parallel Pro-
gramming, vol. 39, no. 3, pp. 296–327, 2011.

[4] G. Guyatt, J. Cairns, D. Churchill et al., “Evidence-based medicine: A
new approach to teaching the practice of medicine,” JAMA, vol. 268,
no. 17, pp. 2420–2425, 1992.

[5] M. Hashimoto, A. Mori, and T. Izumida, “A comprehensive and scalable
method for analyzing fine-grained source code change patterns,” in
Proceedings of the 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER’15), 2015, pp. 351–360.

[6] M. Hashimoto and A. Mori, “Diff/TS: A tool for fine-grained structural
change analysis,” in Proceedings of the 15th Working Conference on
Reverse Engineering (WCRE’08), 2008, pp. 279–288.

[7] M. Yokokawa, F. Shoji, A. Uno, M. Kurokawa, and T. Watanabe,
“The k computer: Japanese next-generation supercomputer development
project,” in Proceedings of the 2011 International Symposium on Low
Power Electronics and Design (ISLPED), 2011, pp. 371–372.

[8] H. Miyazaki, Y. Kusano, H. Okano, T. Nakada, K. Seki, T. Shimizu,
N. Shinjo, F. Shoji, A. Uno, and M. Kurokawa, “K computer: 8.162
petaflops massively parallel scalar supercomputer built with over 548k
cores,” in 2012 IEEE International Solid-State Circuits Conference
(ISSCC) Digest of Technical Papers, 2012, pp. 192–194.

[9] W. M. Fitch and E. Margoliash, “Construction of phylogenetic trees,”
Science, vol. 155, pp. 279–284, 1967.

[10] M. Hashimoto and A. Mori, “Enhancing history-based concern mining
with fine-grained change analysis,” in Proceedings of the 16th European
Conference on Software Maintenance and Reengineering (CSMR2012),
2012, pp. 75–84.

[11] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga,
“The NAS parallel benchmarks—summary and preliminary results,” in
Proceedings of the 1991 ACM/IEEE Conference on Supercomputing
(SC’91), 1991, pp. 158–165.

[12] H. Tomita and M. Satoh, “A new dynamical framework of nonhydrostatic
global model using the icosahedral grid,” Fluid Dynamics Research,
vol. 34, no. 6, pp. 357–400, 2004.

[13] M. Satoh, T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S. Iga,
“Nonhydrostatic icosahedral atmospheric model (NICAM) for global
cloud resolving simulations,” Journal of Computational Physics, vol.
227, no. 7, pp. 3486–3514, 2008.

[14] M. Satoh, H. Tomita, H. Yashiro, H. Miura, C. Kodama, T. Seiki,
A. Noda, Y. Yamada, D. Goto, M. Sawada, T. Miyoshi, Y. Niwa,
M. Hara, T. Ohno, S.-i. Iga, T. Arakawa, T. Inoue, and H. Kubokawa,
“The non-hydrostatic icosahedral atmospheric model: Description and
development,” Progress in Earth and Planetary Science, vol. 1, no. 1,
p. 18, 2014.

[15] G. Tsoumakas and I. Katakis, “Multi-label classification: An overview,”
International Journal of Data Warehousing and Mining, vol. 3, no. 3,
pp. 1–13, 2007.

[16] J. H. Zaragoza, L. E. Sucar, E. F. Morales, C. Bielza, and P. Larrañaga,
“Bayesian chain classifiers for multidimensional classification,” in Pro-
ceedings of the 22nd International Joint Conference on Artificial Intel-
ligence (IJCAI’11) - Volume Three, 2011, pp. 2192–2197.

[17] N. Chaimov, S. Biersdorff, and A. D. Malony, “Tools for machine-
learning-based empirical autotuning and specialization,” International
Journal of High Performance Computing Applications, vol. 27, pp. 403–
411, 2013.

[18] S. S. Shende and A. D. Malony, “The tau parallel performance system,”
International Journal of High Performance Computing Applications,
vol. 20, no. 2, pp. 287–311, 2006.

[19] M. Burtscher, B.-D. Kim, J. Diamond, J. McCalpin, L. Koesterke, and
J. Browne, “PerfExpert: An easy-to-use performance diagnosis tool for
hpc applications,” in Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC’10), 2010, pp. 1–11.

[20] L. Fialho and J. Browne, “Framework and modular infrastructure for
automation of architectural adaptation and performance optimization for
HPC systems,” in Proceedings of the 29th International Supercomputing
Conference (ISC’14), 2014, pp. 261–277.

[21] A. Grebhahn, S. Kuckuk, C. Schmitt, H. Köstler, N. Siegmund, S. Apel,
F. Hannig, and J. Teich, “Experiments on optimizing the performance of
stencil codes with spl conqueror,” Parallel Processing Letters, vol. 24,
no. 03, 2014.

[22] N. Siegmund, S. S. Kolesnikov, C. Kästner, S. Apel, D. Batory,
M. Rosenmüller, and G. Saake, “Predicting performance via automated
feature-interaction detection,” in Proceedings of the 34th International
Conference on Software Engineering (ICSE2012), 2012, pp. 167–177.

[23] M. Fowler, Refactoring: Improving the Design of Existing Code
(Addison-Wesley Object Technology Series). Addison-Wesley Longman
Publishing Co., Inc., 1999.

[24] S. Demeyer, S. Ducasse, and O. Nierstrasz, “Finding refactorings via
change metrics,” in Proceedings of the 15th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications
(OOPSLA’00), 2000, pp. 166–177.

[25] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim, “Template-based
reconstruction of complex refactorings,” in Proceedings of the 26th IEEE
International Conference on Software Maintenance (ICSM’10), 2010,
pp. 1–10.

[26] D. H. Huson and C. Scornavacca, “A survey of combinatorial methods
for phylogenetic networks,” Genome Biology and Evolution, vol. 3, pp.
23–35, 2011.

[27] S. Negara, M. Codoban, D. Dig, and R. E. Johnson, “Mining fine-grained
code changes to detect unknown change patterns,” in Proceedings of
the 36th International Conference on Software Engineering (ICSE2014),
2014, pp. 803–813.

[28] K. Herzig and A. Zeller, “The impact of tangled code changes,”
in Proceedings of the 10th Working Conference on Mining Software
Repositories (MSR’13), 2013, pp. 121–130.

[29] M. Dias, A. Bacchelli, G. Gousios, D. Cassou, and S. Ducasse, “Untan-
gling fine-grained code changes,” in Proceedings of the 22nd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER’15), 2015, pp. 341–350.


