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Abstract

This paper reports on a tool for fine-grained analysis
of structural changes made between revisions of programs.
The tool, called Diff/TS, calculates, visualizes and clas-
sifies edit operations including “moves” that will change
one revision into another by means of detailed tree struc-
tural analysis on source code. Such analysis tends to be
time consuming and inflexible. We have extended a gen-
eral tree comparison algorithm with heuristics driven con-
trol configurable for multiple programming languages and
have achieved both processing speed and analysis preci-
sion needed for investigating large-scale software projects.
The tool is capable of processing Python, Java, C and C++
projects. We present several applications including soft-
ware “archaeology” on a widely known open source soft-
ware project and automated “phylogenetic” malware clas-
sification based on control flows. These examples suggest
that tree differencing is useful for measuring distance or
dissimilarity between tree structured artifacts, and offer
good precision tests of the method.

1. Introduction

Identifying detailed difference between revisions of pro-
grams has many potential applications. For instance, it will
help us:

• understand changes by way of neat visualization [19],

• analyze and classify code changes such as common
and frequent bug fix patterns [14, 8],

• predict potential future modifications by mining
change histories [20, 23],

• merge branches in ways that are suitable for target pro-
gramming languages [10], and

• analyze safety of dynamically updating running pro-
grams [17, 9].

Yet, we rarely see such tools being used in practical soft-
ware maintenance tasks. An obstacle lies in the difficulty in
designing an efficient algorithm for computing changes that
are precise in terms of evolving software. Such tools should
support multiple programming languages coping with dif-
ferent syntactic features to cover broader range of software
projects. Most tools proposed so far are limited to a single
programming language and have little room for customiza-
tion.

In these regards, it is natural to consider algorithms for
tree-to-tree correction problems [18, 22, 4] since the syn-
tactic structures of the program are represented by abstract
syntactic trees (ASTs). Such algorithms extend string dif-
ferencing algorithms [13] to compute an edit sequence com-
posed of three basic edit operations delete, insert and
relabel that transforms one tree into another with mini-
mum cost, where the cost is given by the sum of the cost of
each involved edit operation. The cost of the edit sequence
with minimum cost is called the edit distance.

There are several issues to consider. Firstly, these
algorithms are computationally complex (quasi-quadratic
at best) and are hardly practical for real-world software
projects that may well have thousands of lines of code and
tens of thousands of AST nodes per compilation unit. Sec-
ondly, it often makes more sense to include move in repre-
senting changes between programs in addition to delete,
insert and relabel. Thirdly, syntactic categories are ig-
nored in these algorithms. For instance, it is possible that
a relabel changing an integer constant to a conditional
statement is generated.

In order to overcome these somewhat incompatible prob-
lems, we have designed a new algorithm combining tree dif-
ferencing with configurable heuristics, and implemented a
tool, called Diff/TS, for fine-grained analysis of structural
changes made between revisions of programs. Features of
Diff/TS include:

Fine-grained comparison: The comparison can be con-
trolled in various syntactic granularities such as classes,
functions, declarations, statements and expressions.
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Figure 1. DiffViewer

Neat visualization: A two pane graphical user interface
called DiffViewer is offered for browsing changes between
revisions as shown in Figure 1. It overlays edit operations
on source code texts, where change related texts are colored
and sticky lines are drawn for moves and relabels.
Classification of edit operations: Since our differencing
algorithm emits fine-grained edit sequence, we can clas-
sify a segment of edit operations into pre-defined types for
coarse-grained change analysis as explored by Fluri and
others [8].
Multilingual analysis: Programs written in Python, Java,
C and C++ are accepted. The language specific heuristics
can be specified in a language independent manner.
Distance measurement: Edit sequences can be used for
measuring distance or dissimilarity between revisions of
software.
Phylogenetic Analysis: Once the distance between each
pair of revisions is calculated, a phylogenetic algorithm can
be used to reconstruct evolution trees. This is particularly
useful for archaeological study of historic software products
and serves as a good precision test of the method.

For the last testing purpose, we have conducted a couple
of experiments: reproduction of evolution process among
early Emacs releases, and analysis of variation process of
malware (i.e., computer viruses/worms) binaries spread in
the wild. We will present compelling results of these as well
as a few benchmark results to demonstrate the capability of
the tool.

The rest of the paper is organized as follows. The dif-
ferencing algorithm is illustrated in Section 2. Section 3
reports on the results of experiments. After related work is
reviewed in Section 4, we conclude the work in Section 5.

2. Tree Differencing Algorithm

The tree edit distance problem is known to be NP-hard
with move operations [11], which renders optimal algo-
rithms impractical. It is polynomial time without move op-

Figure 2. Edit Operations

erations [18]. However, the algorithms proposed so far are
quasi-quadratic at best in time complexity and quadratic in
space complexity, and hence inefficient for trees with prac-
tical size. The idea of finding an optimal edit sequence
with minimum cost must be abandoned for the sake of faster
computation. Approximation is inevitable for concrete ap-
plications.

Our tree differencing algorithm approximates the edit
distance between two rooted ordered labeled trees T1 and
T2 by computing an edit sequence consisting of delete,
insert, relabel and move that transforms T1 into T2 in a
way that is as economical as possible.

In the following, we explain basic notations, as well as
the edit operations we consider, and then describe the algo-
rithm. For simplicity, we assign a cost value 1 to each of
the four edit operations for the rest of the paper. This means
that the cost of an edit sequence is given by the number of
edit operations. Let T be a rooted ordered labeled tree. We
denote by nd(T ) the set of nodes contained in T . We write
a ∈ T for a ∈ nd(T ) and |T | for |nd(T )|. The label of
node a is denoted by lab(a). The root node of T is denoted
by root(T ). If a ∈ T , we write T 〈a〉 for the subtree rooted
at a. The number of children of a is denoted by deg(a).

For transforming trees, we consider four edit operations,
delete, insert, relabel, and move which are illustrated
in Figure 2. A delete is denoted by del(a) where a ∈ T
and a 6= root(T ). Let p be the parent of a. The operation
disconnects a from p, then inserts children of a into the po-
sition of a under p. The positions of children of p in the
rightside of a shift to right accordingly. An insert is de-
noted by ins(a, b, i, s) where b ∈ T , 1 ≤ i ≤ deg(b) + 1,
and 0 ≤ s ≤ deg(b)−i+1. The operation detaches s nodes
of the i-th to (i+s−1)-th children of b and makes them chil-
dren of a, and then makes a the i-th child of b. The position
of the (i+s)-th child of b becomes i+1. Note that insert is
the opposite of delete. A relabel is denoted by rel(a, l)
which changes the label of a to l. A move is denoted by
mov(w, a, [b1, . . . , bn], c, i, [(d1, k1), . . . , (ds, ks)]) where
w(> 0) is a move id, a, c ∈ T , a 6= root(T ), bj ∈ T 〈a〉,
bj 6= a, bj is not an ancestor of another bh (1 ≤ j, h ≤ n),
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Figure 3. Examples of Edit Operations

the sequence b1, . . . , bn is ordered in left-to-right postorder
in T 〈a〉, and 1 ≤ i ≤ deg(c) + 1. Let p be the par-
ent of a. The operation first disconnects a from p, then
makes b1, . . . , bn children of p at the position of a. The po-
sitions of children of p in the rightside of a shift to right
accordingly. Let T ′ be the tree rooted at a obtained by
detaching T 〈b1〉, . . . , T 〈bn〉 from T 〈a〉. The node dj sat-
isfies that dj ∈ T ′ and 1 ≤ kj ≤ deg(dj) + 1 (1 ≤
j ≤ s). The (i + j − 1)-th child of c becomes the kj-th
child of dj for 1 ≤ j ≤ s. Examples of edit operations
are depicted in Figure 3 where insert0 = ins(e, c, 1, 2),
insert1 = ins(g, e, 3, 0), insert2 = ins(f, e, 1, 2),
move = mov(1, e, [h, i], b, 1, [(g, 1)]), delete0 = del(f),
delete1 = del(g), and delete2 = del(e). Note that move
operates not only on subtrees, but also on any connected
components of a tree.

Our differencing algorithm utilizes Zhang and Shashas’
algorithm (ZS) [22] and maintains the size of the problem
manageable by folding target tree pairs aggressively. It con-
sists of the following steps: preprocessing, subtree compar-
isons, postprocessing, and edit sequence generation. In the
preprocessing step, subtrees of certain categories are col-
lapsed and shared subtrees are pruned to reduce the size of
the target trees pairs. Then, the subtree comparison step
calls the ZS algorithm to find matched node pairs, which
are further examined for better outputs in the postprocess-
ing step before edit sequences are finally generated.

It is noted here that the algorithm keeps track of a set
M of matched pairs of nodes between target trees and we
regarded M as a partial function between sets of nodes. For
(a, b) ∈ M , we write M(a) = b or M−1(b) = a as the
match is always one to one.

2.1. Preprocessing

The preprocessing step consists of subtree collapsing,
prepruning, and prematching. First, in the subtree collaps-
ing step, collapsed form of the input trees are derived. Sub-

Figure 4. Collapse and Expand

trees of certain syntactic categories are chosen as the col-
lapse targets. In the case of Java programs, for example,
nodes for classes, interfaces, declarations, methods, field
declarations and blocks are collapsed. The root node of
each collapsed subtree retains a digest value computed as
the hash of serialized representation of the subtree for con-
venient identification. We denote the digest value of T by
Dgt(T ). Expanding a node is the opposite operation of col-
lapsing subtree rooted at the node as illustrated in Figure 4.

Then, the prepruning step prunes and records common
subtrees shared by given input trees by checking the digest
values obtained in subtree collapsing. It is expected that
early removal of common parts of the trees dramatically
improves efficiency. It is noted that a subtree is prepruned
only when its corresponding subtree in the other input tree
is uniquely determined.

Finally, for T1 and T2, the prematching step finds and
records unique one-to-one correspondences between nodes
in T1 and nodes in T2. It is achieved in a manner similar
to the prepruning step except that pruning is not performed.
The recorded correspondences will be used later in the post-
processing step.

2.2. Subtree Comparisons

The whole tree comparison task is gradually divided
into smaller subtree comparisons. For a pair of collapsed
(sub)trees, in order to determine possible subtree pairs for
further comparisons, we apply ZS to the (sub)tree pair. For
T1 and T2, ZS computes an edit sequence with minimal cost
that transforms T1 into T2 using edit operations other than
move. ZS also returns a set of pairs of matched nodes. The
algorithm of subtree comparison is shown in Algorithm 1.

In the algorithm, several external functions are used.
clp(T ) denotes the set of collapsed nodes in T . dgt(a)
denotes the digest value assigned to node a, or ⊥ when
it is not defined yet. ZS returns an edit sequence and
a set M ′ of pairs of matched nodes. Note that ZS uses
not only labels but also digest values to equate nodes and
M ′ may contain relabel candidate pairs of nodes. A func-
tion cluster(T1, T2,M

′) partitions M ′ into disjoint clus-
ters each of which contains maximum connected elements.
If a1, b1 ∈ T1 and a2, b2 ∈ T2, we say (a1, a2) is con-
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Figure 5. An Example of Flattening

nected to (b1, b2) when a1 and a2 are connected to b1 and
b2 in T1 and T2, respectively. FLATTEN is another algo-
rithm to be mentioned later for reducing the size of input
trees by pruning clusters. If ZS matches a1 with a2 where
dgt(a1) 6= dgt(a2), and T1 and T2 are flat, i.e., nodes other
than root are all leaves, the subtrees rooted at a1 and a2 are
selected for further subtree comparison. They are expanded
and compared again by ZS. In subtree comparison, identical
pairs of subtrees are recorded to M and pruned. Unmatched
collapsed nodes are expanded within user-defined size limit,
although it is not explicitly shown in the algorithm. A sub-
tree comparison continues until all collapsed subtrees are
expanded or the size exceeds the limit. When the size ex-
ceeds the limit, the subtree comparison is aborted.

Algorithm 1 Subtree Comparison
1: procedure COMPARE(T1, T2, M )
2: while clp(T1) 6= ∅ or clp(T2) 6= ∅ do
3: E, M ′ ← ZS(T1, T2)
4: for (a1, a2) ∈ M ′ do
5: if a1 and a2 are collapsed then
6: A1 ← nd(T1) \ {root(T1)}
7: A2 ← nd(T2) \ {root(T2)}
8: if dgt(a1) = dgt(a2) then
9: prune T1〈a1〉 and T2〈a2〉

10: M ← M ∪ {(a1, a2)}
11: else if ∀b ∈ A1 ∪ A2, deg(b) = 0 then
12: expand a1 and a2

13: COMPARE(T1〈a1〉, T2〈a2〉, M )
14: end if
15: end if
16: end for
17: C ← cluster(T1, T2, M ′)
18: FLATTEN(T1, T2, M, C)
19: for a ∈ clp(T1) ∪ clp(T2) do
20: expand a
21: end for
22: end while
23: end procedure

In the subtree flattening procedure FLATTEN, clusters
are eliminated and recorded to further reduce the size of in-
put trees. For example, in Figure 5, a cluster which consists
of ten nodes labeled a, b, c, d, and e is eliminated and re-
placed by four nodes labeled a/b and a/c/d where dashed
lines denote matches. a/b represents a part of the path of

f , and a/c/d path of g. Note that node a/b in the right tree
is not eliminated since the node a/b has a child node in the
left tree. The node a/c/d in the left tree is not eliminated
for the same reason. An algorithm of flattening is shown
in Algorithm 2. We assume that [(a1, b1), . . . , (an, bn)]
is sorted in postorder. λx.F denotes an anonymous func-
tion where F denotes a formula. A function (x not in L)
returns true if x is not contained in L, and false other-
wise. filt is a filter function for lists. filt(f, L) denotes
the list constructed from L by eliminating x ∈ L such that
f(x) = false. chnT (a) denotes the list of children of a in
T . append(L, x) appends x to L. pathT (a, b) denotes a
newly created node labeled with a path from a to b in T .

Algorithm 2 Flatten Trees
1: procedure FLATTEN(T1, T2, M, C)
2: for [(a1, b1), . . . , (an, bn)] ∈ C do
3: I, J ← [a1, . . . , an], [b1, . . . , bn]
4: F1, F2 = [], []
5: for k ← 1, n do
6: M ← M ∪ {(ak, bk)}
7: G1 ← filt((λx.(x not in I)), chnT1 (ak)))
8: G2 ← filt((λx.(x not in J)), chnT2 (bk)))
9: if G1 6= [] or G2 6= [] then

10: a′ ← pathT1
(an, ak) . an is a root of the cluster

11: append(F1, a′)
12: let G1 be children of a′

13: b′ ← pathT1
(bn, bk) . bn is a root of the cluster

14: append(F2, b′)
15: let G2 be children of b′

16: end if
17: end for
18: prune an in T1

19: insert F1 to the former position of an

20: prune bn in T2

21: insert F2 to the former position of bn

22: end for
23: end procedure

2.3. Postprocessing

After all subtree comparisons are finished, we postpro-
cess the resulting set M of matched node pairs. The post-
processing step is responsible for the following: elimi-
nating enclaves, eliminating odd relabels, and detecting
relabels.

An enclave in T1 and T2 is a pair of holes, i.e., edit op-
erations contained in other edit operations, in a cluster of
T1 and T2, as depicted in Figure 6. Enclaves are produced
mainly because matches are fragmented by aggressive prun-
ing in the previous steps. It is expected that edit cost is
reduced by eliminating such holes by swapping edit opera-
tions. In order to detect enclaves, we employ ZS algorithm
again for subtrees which have matched root nodes. ZS max-
imizes matches preserving parent-children and sibling rela-
tions. If more nodes in a subtree match than before, the
increased part of the nodes is marked as an enclave. As we
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Figure 6. Enclave Elimination

Figure 7. Odd Relabels

use ZS to find enclaves, enclave elimination step may get
stuck at ZS when it is given excessively large inputs. In or-
der to cope with the situation, we only feed subtrees of size
less than specified threshold to ZS. The threshold may be
altered according to the syntax of the language.

Tree differencing algorithms for minimum edit costs
tend to produce relabels rather than deletes and
inserts since a single relabel operation is usually assigned
lower cost than the sum of the cost of delete and insert
operations. However, in some cases, deletes followed by
inserts are more understandable than the corresponding
relabels. For example, consider relabels in pieces of
Java source code shown in Figure 7. The corresponding
ASTs are shown below in the figure. Actually, we observed
a number of relabels of this kind in a set of test cases
taken from several open source products. They hinder un-
derstanding of the result significantly. A reason for this is
that those algorithms relate nodes in different syntactic cat-
egories, such as a method invocation and a variable declara-
tion. We regard such relabels as odd and eliminate them.
Suppose that a node label lab(a) is relabeled to lab(a′). If
they belong to different syntactic categories, the relabel is
decomposed into delete and insert. In addition, we can
explicitly specify the allowed pairs of syntactic categories
for relabels.

Whereas odd relabels are eliminated by relabel elim-
ination, some meaningful relabels might be overlooked
as demonstrated in Figure 8. Each of lost relabels is de-
composed into delete and insert and buried in the edit

Figure 8. An Overlooked Relabel

Figure 9. Move Generation

sequence. Such deletes and inserts should be dug up
and glued. We employ heuristics for it: a node adjacent to
exactly matched nodes tends to also match either exactly
or by relabel, and it is dangerous to glue deletes and
inserts on nodes for anonymous structures such as blocks
and arguments. Of course, generated relabels between
different syntactic categories except allowed pairs are fil-
tered out from the candidate set.

2.4. Edit Sequence Generation

Finally, the edit sequence for T1 and T2 is generated
from the computed matching M . Generation of edit oper-
ations other than moves is rather trivial. The nodes in T1

and T2 which have no matching companions are deleted
and inserted, respectively. For (a1, a2) ∈ M , a1 is rela-
beled lab(a2) if lab(a1) 6= lab(a2). Thus, we concentrate
on the generation of moves. First, we detect root nodes of
moved trees. For (a1, a2) ∈ M , if the nearest ancestor of
a1 in the domain of M and that of a2 in the range of M
differ, a1 is regarded as a moved root. Hence, root(D) in
Figure 9 is identified as being moved while root(H) is not.
Also permutations, namely moves which change the order
of siblings (ignoring deleted or inserted trees) are detected
such as E in the figure. After permutations are detected,
boundaries of moved trees are determined.

5



Figure 10. Diff/TS System

2.5. Complexity

It is not difficult to confirm that overall worst-case time
complexity cannot be more than O(n2). Most of the al-
gorithms are linear. Among others, subtree comparison is
even linear since the size of input for ZS is bounded to a
certain threshold. Generation of moves has relatively ex-
pensive complexity of O(n2) since sorting and sequence
differencing are involved.

3. Experiments

Several experiments are conducted using the Diff/TS
system, whose architecture is illustrated in Figure 10. The
target source code is parsed to obtain ASTs in XML format,
which are then passed to the differencing engine.

3.1. Small Test Cases

We first report on six small test cases taken from two
well-known open source products. They contain consid-
erable changes including structural moves. In these tests,
we compare the edit costs computed by Diff/TS with the
ones computed by three other available differencing tools.
The samples are five pairs of source code of A) Webap-
pClassLoader, B) ResourceFactory, C) Request, D)
Http11Protocol, and E) DeltaSession, between Apache
Tomcat1 versions 5.5.15 and 5.5.16, and a pair of source
code of F ) Move, between Apache Ant2 versions 1.6.4
and 1.6.5. The size of the samples varies from 143 to 2,523
in LOC and from 233 to 5,073 in the number of AST nodes.

1http://tomcat.apache.org/
2http://ant.apache.org/

All samples are written in Java. The tools that are com-
pared with Diff/TS are XyDiff [5], DeltaXML [7], and
XMLDiff3. XyDiff is a very fast differencing engine writ-
ten in C++. It is designed for massive volume of XML
documents and can detect moves. We used version 2.6.1.
DeltaXML is a commercial differencing engine used for
managing changes in XML data. We used version 5.0
of DeltaXML Core. XMLDiff is an implementation of
Chawathe’s algorithm [3] which can detect moves. It is writ-
ten in Python and C. We used version 0.6.8. Note that these
algorithms compute edit costs in restricted use of edit oper-
ations. For example, XMLDiff only considers move oper-
ations on subtrees and other operations on leaves. A larger
number of operations are needed in general for computing
an edit sequence compared to Diff/TS. Since all these en-
gines are designed for XML documents, we prepared XML
documents equivalent to the ASTs generated by Diff/TS
for comparison. The edit costs and the total time in seconds
are shown in the following table.

XyDiff DeltaXML XMLDiff Diff/TS
A 146 3052 241 101
B 180 86 121 80
C 17 17 31 13
D 57 50 76 43
E 264 261 235 94
F 595 691 736 312
total edit cost 1259 4157 1440 643
total time 0.819 20.213 95.313 12.262

We used a PC with Intel Xeon CPU (1.6GHz) with 2GB
RAM running under Linux kernel 2.6.20. Note that the edit
costs computed by each algorithm are adjusted for guaran-
teeing comparisons under the same condition. The total cost
computed by Diff/TS is much smaller than those by other
engines. In terms of obtaining precise information about
changes, Diff/TS is better than the others while XyDiff is
by far the fastest in processing speed. It is found by man-
ual inspection that only Diff/TS was able to detect moves
correctly. It is also found that the precision of XyDiff is not
good enough for the phylogenetic experiments in 3.3.

We tried testing the pure ZS algorithm on the same sam-
ples, but it runs out of memory on sources larger than 400
LOC (1,000 in the number of AST nodes). This suggests
that memory efficiency is a major obstacle for optimal algo-
rithms in practice.

3.2. Analyzing Larger Code Bases

Here we apply Diff/TS to larger code bases. We
built local mirrors of source code repositories of two open
source projects: MythTV4 and Boost C++ Libraries5 as

3http://www.logilab/projects/xmldiff/
4http://www.mythtv.org/
5http://www.boost.org/
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of March, 2008 to feed Diff/TS. For each project, released
revisions are extracted from tags or tags/release di-
rectories in the mirror. We analyzed the changes between
contiguous released revisions. Most part of the source code
is written in C++ or C. It is too costly to build all revisions
of programs for preparing complete parse trees since it in
general requires processing include files. We used a parser
based on CDT 6 for the experiment, which is able to parse
source code under limited information in such a case where
not all include files are present. Several statistics are listed
below.

MythTV Boost
revisions 25 67
files 21,718(8,861) 248,774(31,480)
file comparisons 6,209 21,677
LOC 9,672,416(4,622,723) 38,456,232(5,066,585)
missing LOC 22,014(11,311) 1,121,133(191,305)
LOC coverage 99.77(99.76) 97.08(96.22)

The set of pairs of files to be compared is computed by the
directory differencing mode of Diff/TS. In parentheses, the
files used for the comparisons are counted. The missing
LOC denotes the number of lines which the parser failed to
parse because of a variety of parse errors or some internal
errors in CDT. It took about 6 hours and about 33 hours to
parse the selected revisions of MythTV and Boost, respec-
tively.

For each target project, the total edit cost is also com-
puted by the three engines other than XMLDiff that is too
slow for this experiment. The edit cost and time in minutes
(in parentheses) for the comparison are shown in each entry
of the following table.

XyDiff DeltaXML Diff/TS
MythTV 4,900,810(34) 11,891,155(230) 3,771,516(600)
Boost 4,146,016(37) 3,180,617(470)7 2,139,585(203)

The same machine as for the small test cases is used. We ob-
served that Diff/TS slows down on huge (more than 50,000
nodes) inputs in the case of MythTV.

3.3. Phylogeny

Phylogeny is a new method of bio-informatics stemmed
from molecular biology, which aims at mathematical mod-
elling of specific evolution based on the difference of gene
structures [15]. Even though there are obvious differences
between software and species, if we regard software prod-
ucts as species and source code as genes, evolution of soft-
ware can be investigated in the same way as evolution of
species.

Phylogenetic analysis starts by computing distance be-
tween each pair of revisions to generate a distance ma-
trix. Diff/TS employs the distance value which we call

6http://www.eclipse.org/cdt/
7More than 1,000 pairs of ASTs escaped from edit cost calculation due

to the failure caused by DeltaXML.

cost-match ratio (CMR) obtained by dividing total edit cost
by the number of matched pairs of nodes. Diff/TS per-
forms this round-robin computation for all revisions in the
requested project. An open source tool called PHYLIP 8

is used for generating evolution trees from a distance ma-
trix. There are two major algorithms available in PHYLIP:
Neighbor Joining (NJ) Algorithm and Fitch-Margoliash
(FITCH) Algorithm. PHYLIP. In general, the NJ algorithm
is much faster than the FITCH algorithm since FITCH tries
to minimize sums of distance in evolution trees. In our
experience, both algorithms give similar results for most
cases. However, for a heterogeneous mix of samples, they
tend to disagree in slight favor of FITCH. We always try
both algorithms and compare their results. In fact, a result
by FITCH is presented for the example of old Emacsen in
Section 3.3.1 and a result by NJ for the malware example in
Section 3.3.2.

We used a PC with Quad-Core Intel Xeon CPU (3.0GHz)
with 16GB RAM running under Linux kernel 2.6.22 for
experiments below.

3.3.1 Archaeology

For testing Diff/TS, we have chosen Emacs editor as a tar-
get software. We have collected twenty six versions of early
Emacs editors including ancient Emacs-13.8.5 released in
1985. Pairwise distance of the releases are computed to
produce a distance matrix by Diff/TS. To produce phyloge-
netic tree, the distance matrix is fed to the FITCH algorithm
of the PHYLIP package for inferring phylogenetic trees. In
a phylogenetic tree, a node with descendants represents the
most recent common ancestor of the descendants, and the
horizontal edge lengths correspond to distance (dissimilar-
ity) estimates. It took about 32 hours to compute the dis-
tance matrix with a single process, and about 1.5 seconds
to compute phylogenetic tree. Throughout the experiment,
12,174 file comparisons are performed. There are more than
200 trees that contain more than 10,000 nodes. The result-
ing phylogenetic tree is shown in Figure 11. Each leaf is
labeled with a version number where mu, ne, ep, le, and
xe denotes branches of Emacs, namely Mule, NEmacs,
Epoch, Lucid Emacs, and XEmacs, respectively. Remark-
ably enough, the phylogenetic tree is consistent with the
“Emacs Timeline” [21] recorded by one of the main con-
tributers of Lucid Emacs and XEmacs while the distance
matrices computed by GNU diff and XyDiff failed sub-
stantially to reproduce a “correct” timeline. The example
provides a good evidence that accurate tree differencing is
useful for automated analysis in software archaeology.

8http://evolution.gs.washington.edu/phylip.html
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Figure 11. Phylogenetic Tree of Old Emacsen

3.3.2 Malware Phylogeny

In this part, we present the results of phylogenetic analysis
of malware behaviors. Although malware is in fact soft-
ware that may have a number of revisions (called variants
for malware), source code is hardly available. To make mat-
ters worse, binary code is usually encrypted and/or obfus-
cated in order to escape from analysis tools such as disas-
semblers, debuggers and virtual machines. This means that
static binary code analysis does not help to understand mal-
ware behaviors at all.

We use a tool called Alligator developed by the second
author for automated malware scrutinization [12]. Alliga-
tor defeats encryption and obfuscation and is able to gener-
ate control flow graphs (CFGs) observed in a software con-
trolled virtual execution environment.

Since CFGs are graphs and are not amenable to meth-
ods based on tree differencing, we have extended Alligator
to export dominator trees [6] in an XML format computed
from CFGs hoping that the essence of malware behaviors is
captured in them. In a dominator tree, a node represents a
basic block 9 and may be labeled with names of API func-
tions called in the corresponding basic blocks. Nodes hav-
ing no labels are treated alike as “anonymous”.

From malware samples captured by a Nepenthes hon-
eypot system 10 over a year period, approximately ninety
samples identified as Sdbot worms by BitDefender 11 are
fed to Alligator, which then generates CFGs up to the

9A basic block is a sequence of code that enjoys a “single entry and
single exit” property.

10http://nepenthes.mwcollect.org
11http://www.bitdefender.com

point where network related behaviors are visible, computes
dominator trees, and passes them to the differencing engine
of Diff/TS.

At the same time, three clusters of Sdbot worms are
identified in the samples by manual inspection:

• Cluster 1: samples that display socket based botnet in-
teractions, encrypted by normal packers,

• Cluster 2: samples that open internet connections us-
ing WININET library and start a service process with
duplicated selves, encrypted by normal packers,

• Cluster 3: samples that have the same behaviors as
Cluster 1, but protected by a powerful commercial ex-
ecutable protector called Themida 12.

Figure 12 shows an output evolution tree together with
the above clustering overlaid on it. Note that distance is
computed using the NJ algorithm. In the tree, each leaf
is labeled by 1) first ten characters of an MD5 hash string
of the malware file, and 2) a timestamp embedded in the
header of the executable if it is valid.

Now it is easy to confirm that the analysis result is con-
sistent with the clustering identified by manual inspection
as samples belonging in the same cluster are located in the
same branch of “evolution”. Let us take a closer look into
Cluster 3. Firstly, the worm seems to have evolved from
Cluster 1 to become more complex ones as they get pro-
tected by Themida. Secondly, the worm seems to get more
complex as Themida upgrades to newer versions while the
core malicious behaviors stay the same. Thirdly, the times-
tamp does not match the way the worm changes. This is
not surprising since it it a well known fact that most hackers
only alter the way the malware code is wrapped by pack-
ers/protectors since that is enough for cheating anti-virus
scanners for a short while. We can not expect that phyloge-
netic study reveals real malware evolution in order of time.
Rather, it reveals how malware code is shared and reused
in hacker’s community. Let us turn to the shadowed part in
Figure 12. It contains samples that are not Sdbot variants
as their behaviors are considerably different from those of
other Sdbot samples. That is why those samples are placed
in a remote spot in the phylogenetic tree. The situation is
clarified by clustering samples using the same distance ma-
trix. Figure 13 shows a clustering result calculated by R
statistical computing package 13.

In summary, our tools Diff/TS and Alligator are able to
analyze and classify malware to suggest variation process
in full automation. It turned out that our tools are able to
demonstrate a marginal area in malware identification. Edit
costs calculated by Diff/TS for dominator trees computed

12To the best our knowledge, there is no tool that can automatically un-
pack Themida protected executables yet.

13http://www.r-project.org/
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Figure 12. Phylogenetic Tree of Sdbot Worms

by Alligator well approximate similarity among malware
behaviors.

The benchmark data for this experiment are: 279 min-
utes for calculation of a distance matrix and 350 millisec-
onds for generating a phylogenetic tree using the NJ algo-
rithm. The node numbers for Themida protected samples
are as large as 30,000.

4. Related Work

Several tree differencing algorithms are known to com-
pute the minimum edit cost. Variants of Kuo-Chun Tai’s
algorithm [18] compute the minimum edit cost between
rooted ordered labeled trees with three basic edit opera-
tions [22, 4]. Application to tree-structured data including
RNA secondary structures, XML documents, and software
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Figure 13. Clustering of Sdbot Worms

source code has been explored. However, these algorithms
are quasi-quadratic at best in time complexity [4] and have
suffered from computational inefficiency as the input size
increases.

Three basic edit operations, namely delete, insert,
and relabel, are not sufficient for reconstructing actual
changes made between revisions of software. Barnard and
others [1] extended Zhang and Shashas’ algorithm with
swapping of subtrees which can be regarded as a special
case of our move. Such extension complicates the problem
for practical use even if it guarantees minimality of the edit
cost. More operations are necessary for representing a move
operation in our method and the computation speed is even
slower than ZS.

Efficient optimal differencing algorithms can be formu-
lated by restricting use of edit operations [16, 3, 2]. For in-
stance, mmdiff [2] restricts basic edit operations on leaves
only. Since optimality is relative to imposed restrictions, the
effectiveness of such algorithms depends on target applica-
tion domains and it is difficult to compare them with other
approaches such as the one proposed in the current paper.

There are several tree differencing algorithms special-
ized for source code of the programs that utilize domain
specific heuristics [14, 8]. They exhibit good processing
speed and quality of analysis for a wide range of practical
problems. Dex [14] proposes an automated method of col-
lecting detailed information about syntactic and semantic
changes in C programs to identify specific bug fix patterns.
ChangeDistiller [8] classifies source code changes accord-
ing to pre-defined taxonomy such as addition of parameters
to function definitions, and type changes in variable decla-
rations, for better understanding of evolving natures of soft-
ware. Both Dex and ChangeDistiller are bound to single
language (C and Java respectively) although application to
other languages is suggested in the papers.

9



5. Conclusion and Future Work

We developed a novel tool, called Diff/TS, for fine-
grained structural change analysis between versions of pro-
grams. The tool calculates, visualizes and classifies edit op-
erations including “moves” on source code that will trans-
form one revision into another by means of detailed tree
structural analysis on parsed source code. Such analy-
sis tends to be time consuming and inflexible, however,
we have extended a general tree comparison algorithm
with heuristics driven control and achieved both processing
speed and analysis precision needed for investigating large-
scale software projects. Diff/TS covers wide range of soft-
ware written in Python, Java, C and C++, as well as domi-
nator trees derived from control flow graphs gathered in vir-
tual execution. The capability of Diff/TS is benchmarked
against other similar tools on several test cases taken from
open source projects. We find the result positive, especially
in terms of performance and quality of the analysis.

Another type of evaluation is provided by the fact that
edit cost can be used for measuring distance or dissimilarity
between revisions of software. Applying a tree differencing
algorithm to phylogenetic analysis reveals the accuracy of
the algorithm. We chose old/ancient version of Emacs edi-
tor as a target for phylogeny and successfully reconstructed
an evolution tree for it by Diff/TS. We have also presented
an experiment of malware phylogeny. Malware’s behaviors
are extracted from its control flows in the form of dominator
trees. Phylogenetic analysis revealed a compelling variation
process of a botnet family called Sdbot.

Future work includes addition of more complex edit op-
erations such as copy and performance improvement on
huge trees. Annotated differencing in the style of Dex is
also promising. For instance, semantic information such as
scope of variables may be embedded in ASTs for semantic
change analysis.
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