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Abstract—This paper presents a comprehensive method for
identifying fine-grained change patterns in the source code of
large-scale software projects. Source code changes are computed
by differencing abstract syntax trees of adjacent versions and
transferred to a set of logical statements called a factbase. A
factbase contains information for tracking and relating source
code entities across versions and can be used to integrate analysis
results of other tools such as call graphs and control flows. Users
can obtain a list of change pattern instances by querying the
factbase. Experiments conducted on the Linux-2.6 kernel, which
involve more than 4 billions of facts, are reported to demonstrate
capability of the method.

I. INTRODUCTION

Understanding source code changes and their effects on
software systems is an important and challenging problem
especially for a large-scale project, where the system is devel-
oped by a group of people and has a long history. Considering
the rigor and the volume of the information needed for accom-
plishing the task, it is imperative to automate computational
steps such as change identification and classification, entity
tracking, fact extraction and integration, factbase management,
and query processing. Although there have been many studies,
proposed methods, and tools on the issues [1], [2], [3], [4],
previous approaches either focused only on specific aspects of
the problems, lacked precision needed for detailed analysis,
assumed particular programming systems and languages, or
lacked interoperability over standard technologies. This forces
developers and maintainers to customize new methods and
tools to collect and integrate data across versions for com-
prehending the past and the present developments.

To remedy the situation, we propose in this paper a com-
prehensive method for analyzing fine-grained code changes
in a way that is scalable, interoperable and transferable. The
method takes a “query-based” approach and allows users to
work with query sentences rather than source files by ex-
pressing “facts” about source code changes with vocabularies
defined by a common set of “ontologies” and storing them in
a database of facts called a “factbase”.

The factbase contains change histories at the level of
abstract syntax trees (ASTs) computed by comparing ASTs of
adjacent versions [5]. They are used for integrating facts given
by other tools [6], [7]. The factbase takes queries that specify
graph patterns of changes and finds matching instances. The

retrieved instances contain references to original source code
texts and can be examined using various user friendly tools
such as source code viewers. For interoperability, standard
web technologies such as the RDF1 (Resource Description
Framework) data model, the OWL ontology language2 and the
SPARQL query language3 are employed.

To illustrate the capability of the method, we explain
experiments of fine-grained change pattern identification con-
ducted for the Linux-2.6 kernel source code. The analysis
involves more than 4 billions of RDF triples that describe
facts about AST changes, control flows, and call relations from
release 2.6.18 through 2.6.39. We first show the results of
refactoring identification originally reported by Kawrykow and
Robillard for Java systems [4], where cosmetic changes such
as renaming and introduction of local variables are identified
for further substantial analysis. Then we report identification
of bug fixing patterns by taking an example from a program
matching and transformation tool called Coccinelle [8]. We
finally describe analysis of so-called “BKL (Big Kernel Lock)
pushdown”, a community wide effort to erase the obsolete
locking mechanism from the entire kernel tree. Since the
pushdown pattern must be specified with the locking context
in terms of control flows and call relations, we employ a C
language parser from Coccinelle for generating statement level
control flows and a compiler tool called ncc4 for generating
function call graphs.

The results show that our method can detect change
instances both precisely and efficiently. It is also suggested
that the method is useful for analyzing changes in a broader
perspective since queries devised for specific patterns can be
easily adapted for other patterns and even for different pro-
gramming languages. The method allows users to concentrate
on analysis of facts rather than generation of facts, which may
open the door to “query engineering” for software analysis.

The rest of the paper is organized as follows. Section II
reviews technical backgrounds such as AST differencing, fact-
base construction and factbase queries. Experiments of source
code change pattern identification are detailed in Section III.

1http://www.w3.org/RDF/
2http://www.w3.org/OWL/
3http://www.w3c.org/TR/sparql11-query/
4http://students.ceid.upatras.gr/∼sxanth/ncc/
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Fig. 1. Query Based Change Pattern Identification

After related work is explained in Section IV, Section V
concludes with discussions.

II. OVERVIEW OF THE METHOD

In this section, we review technical backgrounds for the
proposed method. Figure 1 illustrates the concept of query
based change pattern detection. The method takes the follow-
ing steps:

1) Common concepts and vocabularies for expressing facts
about source code changes are defined as ontologies.
The RDF data model and the OWL language are used
for this.

2) For each adjacent version pair of the target system,
change histories are computed by way of AST compar-
ison [5] and recorded in the factbase of an RDF store.
The tools is called Diff/TS.

3) Per version analysis by other tools is performed. Addi-
tional descriptions in the ontologies and modifications
to the tools may be necessary. The results are imported
to the factbase.

4) A user prepares a change pattern query using the
SPARQL language. The query is executed on the RDF
store and the user get a list of instances, which can be
examined by various diff viewers.

In the following, we explain important items in detail.

A. Computing Source Code Changes

Diff/TS is a change analysis tool developed in our past
project [5]. It is based on tree differencing on ASTs and
identifies fine-grained changes between revisions of software
systems written in C, C++, Java, Python, Verilog and Fortran.
Diff/TS regards a revision of a software system as a directory
tree where leaves correspond to ASTs derived from source
files. It first pairs corresponding source files by comparing
directory trees and parses each file pair to obtain an AST
pair (t1, t2). It then calculates a sequence of edit operations,
consisting of deletion, insertion, relabeling, and move of AST
nodes that transforms t1 into t2. The cost of an edit sequence
is estimated by giving a cost value for each edit operation
and calculating the sum for the operations contained in the
sequence.

Since an AST is naturally modeled by a labeled ordered
tree, we can use an optimal tree differencing algorithm to com-
pute edit sequences with minimum costs [9]. However, optimal
algorithms are quasi-quadratic at best in time complexity and
quadratic in space complexity [10], and inefficient for large

trees that contain tens of thousands of nodes such as ASTs
derived from thousands of source lines of code.

Diff/TS approximates an optimal algorithm by employing
tactics such as tree decomposition, subtree hash encoding, and
heuristic post-processing mechanisms. As a result, the edit
sequences computed by Diff/TS may not be optimal in terms
of costs, but nonetheless its precision, in terms of source code
changes, has been verified by a series of advanced software
change analyses [5], [6], [7]. The tool now scales to large
code bases such as the whole Linux-2.6∼3.x kernel trees.

Diff/TS not only calculates the differences but also identi-
fies the parts that are unchanged, which offers a powerful way
of tracking source code entities across versions even when they
are renamed and moved. In technical terms, the tool generates
AST node mappings between given pairs of software revisions,
where mapped pairs represent unchanged, relabeled or moved
nodes. This mapping capability play an important role for
integrating per version facts such as call relations and control
flows, which we will see in Section III.

B. Representing Facts

Our goal is to develop a method which is independent of
specific programming tools, platforms, models and languages
to facilitate collaborative efforts in software change analysis.
To achieve this, we construct accessible databases about source
code changes using the Semantic Web technologies5, which
aim at describing, publishing, and understanding relationships
between things on the Web. We will explain basic ideas of
factbase construction in the following.

A fact about source code is described as a triple of subject,
predicate (also called property), and object following the
RDF data model. Both subjects and objects may be source
code entities such as files, functions/methods, and statements.
Predicates denote binary relations between source code entities
or between source code entities and their attributes. In the
latter case, the object may be a literal. For example, let v be
a variable. Then (v,name,"x") represents a fact that v has a
name x.

At this point, we must decide how we represent source
code entities such as a variable v in the above example. For
this purpose, we had decided to use textual regions in source
files for representing source code entities [7]. Since any tools
and users should be able to point code regions of their interests,
textual regions should serve as universal and independent ways
of sharing and exchanging information about source code.

Since the Semantic Web technologies advocate using IRIs6

(Internationalized Resource Identifier) to identify things on the
web, we associate an IRI with a source code entity by first
concatenating and then encoding the following items:

• an ID of the source file containing the entity,

• the start position of the entity in the file, and

• the end position of the entity in the file.

We can employ a hash value of the file for an ID, and triples
of a line number, a column number and an offset for positions

5http://www.w3.org/standards/semanticweb/
6http://www.ietf.org/rfc/rfc3987.txt
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Fig. 2. Class Hierarchy of Source Code Ontologies (Excerpts)

in the file. For example, we can use an IRI
http://example.com/fact/MD5 ⟨hash value⟩-51 0 2021 51 5 2026
to represent an entity e located between column 0 to 5 at line
51 (or similarly between offset 2021 to 2026) in a source file
that has an MD5 hash value as encoded in the IRI7. We can
express, for instance, a fact that a Java entity e is a public
modifier by a triple (e, rdf:type, java:Public), in which e refers
to a region in a Java source file containing a text “public”.
Note that the predicate rdf:type and the object java:Public both
are IRIs abbreviated by using namespace prefixes.

Kinds of source code entities and predicates such as
“variable”, and “name” above are specified in ontologies. The
predicate rdf:type is a built-in that relates an instance with its
class. Ontologies define concepts and relationships used for
expressing facts. We have defined the following ontologies
needed for fine-grained change analysis on source code:

• a minimum core ontology SRC-ENT for specifying
source code entities independent of programming lan-
guages and tools,

• an ontology VER for representing concepts about ver-
sions in source code management systems,

• ontologies for describing syntactic entities of program-
ming languages, which are defined currently for C (C-
ENT) and Java (JAVA-ENT), and

• an ontology CHG for expressing facts related to AST
changes.

Figure 2 shows the hierarchy of conceptual classes of these
ontologies. The numbers of classes (including subclasses) and
predicates (including sub-properties) defined in each ontology
are shown in shaded boxes. Ontologies are defined using the
OWL ontology language, where each class is defined as a
subclass of owl:Thing. We disambiguate names of conceptual
classes by prefixing namespaces to names such as owl:Thing and
src:Entity. We assume in this paper namespaces for ontologies
shown in Figure 2, XML Schema Datatypes, RDF, RDF
Schema, and OWL.

Ontologies for specific programming languages, such as
JAVA-ENT and C-ENT , define subclasses of src:TextEntity. They

7We actually use SHA1 instead of MD5 to further avoid collisions.

TABLE I. PREDICATES FOR ONTOLOGIES (EXCERPTS)

Predicate Subject class Object class

SR
C

-E
N

T

src:parent src:Entity src:Entity
src:children src:Entity rdf:List
src:containedIn src:Entity src:Entity
⊢ src:inProject src:Entity src:Project
⊢ src:inFile src:TextEntity src:File

src:location src:File rdfs:Literal

C
-E

N
T

c:inDeclaration c:Entity c:Declaration
c:inFunction c:Entity c:FunctionDefinition
c:conditionOf c:Expression c:IfStatement
c:rhs c:Assign c:Expression
c:name c:Entity rdfs:Literal

C
H

G

chg:deletedOrPruned src:Entity src:Entity
⊢ chg:deletedFrom src:Entity src:Entity
⊢ chg:prunedFrom src:Entity src:Entity

chg:insertedOrGrafted src:Entity src:Entity
⊢ chg:insertedInto src:Entity src:Entity
⊢ chg:graftedOnto src:Entity src:Entity

chg:movedTo src:Entity src:Entity
chg:mappedTo src:Entity src:Entity
⊢ chg:mappedEqTo src:Entity src:Entity
⊢ chg:mappedNeqTo src:Entity src:Entity

are derived from the syntax of the language or more specifi-
cally from the syntactic categories used by parsers generating
ASTs. We developed our own Java parser and hence JAVA-
ENT reflects the official Java Language Specification8. For C
programs, we employ a C parser developed for the Coccinelle
project9 which aims at program matching and transformation
for unpreprocessed C code [8]. Note that an instance of
src:TextEntity will be identified by an IRI explained above.

OWL admits two types of predicates: object properties,
which are the relations between instances of conceptual
classes, and datatype properties, which are the relations be-
tween instances and RDF literals or possibly XML schema
datatypes10. Accordingly, a predicate is defined in OWL as a
sub-property of either owl:ObjectProperty or owl:DatatypeProperty.
For both types of predicate, the domain (the class of its subject)
and the range (the class of its object) are specified.

Table I (top) lists predicates excerpted from SRC-ENT .
The upper predicates are object properties and the lower ones
are datatype properties. Indentation with ⊢ indicates that the
predicate is a sub-property of the upper one. For instance,
a predicate src:inFile is a sub-property of src:containedIn and
may describe a textual entity contained in a local file, whose
path name is specified with a predicate src:location. Note that
predicates src:parent and src:children are used to specify the
parent and the children of a node in ASTs.

Since all experiments reported in this paper target the Linux
kernel source code, we only show some of the predicates
defined in C-ENT in Table I (middle). The meanings should
be clear. The main predicates for the versioning ontology VER
include ver:version that relates a source code entity with its
version and ver:next that relates adjacent versions. Predicates
for AST changes defined in CHG are excerpted in Table I
(bottom). The meanings of the predicates shown in the table
are explained below in terms of AST changes.

• A fact (n, chg:mappedTo, n′) means that a node n has
a corresponding node n′ in another AST. In a concrete

8http://docs.oracle.com/javase/specs/
9http://coccinelle.lip6.fr
10http://www.w3.org/TR/xmlschema-2/
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Fig. 3. A Fact Graph for AST Changes

term, n is either unchanged, relabeled or moved to be n′.
When n is relabeled, it implies (n, chg:mappedNeqTo, n′),
otherwise (n, chg:mappedEqTo, n′).

• A fact (n, chg:deletedFrom, n′) means that a node n is
deleted from its parent which corresponds to a node n′

in another AST. The predicate chg:prunedFrom is used
instead of chg:deletedFrom when a whole subtree rooted
at n is deleted.

• A fact (n, chg:insertedInto, n′) means that a node n is
inserted to be a child of a node which node n′ in another
AST corresponds to. The predicate chg:graftedOnto is used
instead of chg:insertedInto when a subtree rooted at n is
inserted.

• A fact (n, chg:movedTo, n′) means that a node n is moved
to be n′ in another AST.

Definition of the above predicates reflects our experience
in fact representation and factbase query using them. For
instance, predicates chg:deletedFrom and chg:insertedInto imply
correspondence of parent nodes.

According to the RDF data model, a set of facts form
a directed graph called a fact graph, where each triple is
represented by a (sub)graph s

p−→ o. Figure 3 shows a fact
graph illustrating intuitive meanings of AST change predicates
explained above. In the graph, solid arrows represent src:parent

and the arrows chg:mappedEqTo for a, h, and i are omitted for
brevity.

C. Managing Factbase

We can start filling an RDF factbase with a set of facts
when we have ontologies and tools to collect instances and
generate facts among them. There are a number of software
systems for managing factbases with ontologies. For the
current research, we have chosen an open source edition of
an RDF store called Virtuoso11 as our factbase management
system. An RDF store is a database system specialized for
storing and managing the RDF data.

We assume that tools export analysis results to files.
Therefore, users need to modify tools and/or create data
exporters so that the results are loaded automatically to the
RDF store according to ontologies. Although time and effort
of the modification is not negligible, we regard it acceptable
because it is a one-time effort and the generated factbase can
be reused and shared for many different purposes.

In the following, we explain some important issues arising
in querying the factbase.

11http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/

1) Querying Factbase: Once the factbase is filled with facts
about changes, we can start querying change patterns. We use
a standard query language for RDF data called SPARQL for
specifying queries. SPARQL has a syntax similar to that of
SQL and allows users to specify graph patterns of facts with
variables. For example, the following query12

SELECT DISTINCT ?func ?fname WHERE {
?func a c:FunctionDefinition ;

c:name ?fname .
}

instructs the RDF store to find fact graphs matching the pattern

c:FunctionDefinition
rdf:Type←−−−−− ?func

c:name−−−−−→ ?fname

and report values for specified variables.

In a SPARQL query, a graph pattern is specified with a
set of triples of the form “subject predicate object”. placed
in the WHERE clause. Triples having the same subject may be
grouped so that the subject is omitted on and after the second
one.

In a graph pattern, identifiers prefixed by “?” denote query
variables. When an RDF store receives the above query,
it searches for fact graphs that match the specified pattern
treating query variables ?func and ?fname as wildcards to be
instantiated with the matched graphs. Note that “a” is an
abbreviation of rdf:type and the DISTINCT modifier inhibits the
same solution from appearing multiple times. It is not difficult
to see that the query lists distinct function names in the
factbase.

2) Guarding Facts: An idea of representing a source code
entity with its source text region and using a hash value of
the source file for IRI encoding is simple and effective since
the encoding is unique as long as no hash collision occurs.
However, there is a subtle problem when an identical file exists
for different versions or even different software system.

Suppose that an identical source file f exists in both
versions v and v′. Since f is an instance of src:File, it is
identified by an IRI which encodes the file hash value both
in v and v′. As a result, the following fact graph is formed.

v
ver:version←−−−−−−− f

ver:version−−−−−−−→ v′

While the graph alone does no harm, a loss of information
occurs when f has different attributes in v and v′ such as
fully qualified file names (FQFNs). If f has FQFNs n and n′

in v and v′, respectively, a query for enumerating these file
names in all versions such as
SELECT DISTINCT ?file ?version ?fname WHERE {

? file a src : File ;
ver:version ?version ;
src : location ?fname .

}

will return a list including (f, v′, n) even when there is no file
having name n in version v′.

To avoid the loss of information, we need to associate each
fact (f, src:location, n) with the version v in which f has a name

12In this paper, the PREFIX clauses of a SPARQL query are omitted for
brevity. They define mapping from prefix names to namespace IRIs.
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Fig. 4. Guard of a Fact

n. For this purpose, we use an RDF blank node to virtually
create a triple having another triple as a subject. An RDF blank
node is a unique anonymous resource that is neither a IRI nor
a literal. It is typically used for grouping data by placing an
edge from it to each group member.

Figure 4 illustrates a virtual fact ((s, p, o), a, A), called a
guard of (s, p, o), where g denotes a blank node, p a predicate
to be guarded such as src:location, a a distinctive property such
as ver:version, A an instance of a, and G(p) a predicate uniquely
determined by p. We can retrieve A from (s, p, o) and a by
combining simple queries.

In general, we consider guarding a predicate when it
involves a class whose instance is uniquely identified by a
file hash value and when it is not closed within the file
boundary. For the experiments reported in this paper, we guard
predicates src:location and ncc:mayCall with versions. The latter
will be explained Section III-C. Note that we could use RDF
reification to express statements about a fact. However, it
requires more triples than guarding and is not suitable for
large-scale analysis.

3) Enriching Factbase: As explained in Section II-A, Dif-
f/TS compares ASTs of the corresponding file pairs in the
directory tree. Although this saves unnecessary comparisons
on remote file pairs, there may be a case where we lose track
of source code entities across files and hence fail to identify
changes across files. This typically arises when a class or a
function is moved from one file to another or when a file is
entirely removed or added.

In the former case, we can compare a removed entity and
an added entity and conclude that they are the moved entity if
they have the same name and/or the similarity of the bodies
is above pre-defined threshold. Although it is an error prone
method, it works well in many cases.

In the latter case, Diff/TS would not know whether an
entity contained in the removed or added file has been removed
or added, respectively. However, Diff/TS does know that the
file has been removed or added in the directory tree and we
would know that entities contained in the files have been
removed or added, too. We can use this information to recover
changes in the same way as in the former case. In both
cases, we store the extra facts for future queries so that they
are processed faster. We also generate facts about the class
hierarchy in object-oriented languages, removal/addition of
entities in the removed/added classes and functions, and types
of declared variables, all of which are inferred from AST facts
provided by Diff/TS.

4) Inferring Facts: RDF stores offer built-in mechanism for
deriving facts from the hierarchy of ontology classes. For ex-
ample, we can assume a non-existent fact (e, chg:mappedTo, e′)
when a fact (e, chg:mappedEqTo, e′) exists in the factbase since
chg:mappedEqTo is a sub-property of chg:mappedTo as explained
in Section II-B. The inference capability of RDF stores is

ret = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, 0), req,
                          USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
                          0x0000, reg, dev->urb_buf, len, HZ);

int pipe = usb_sndctrlpipe(dev->udev, 0);

ret = usb_control_msg(dev->udev, pipe, req,
                          USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
                          0x0000, reg, dev->urb_buf, len, HZ);

Fig. 5. Local Variable Extraction in Linux 2.6 Kernel

SELECT DISTINCT ?decl_ ?x_ ?f_ WHERE {
 ?decl_ a c:InitDeclarator. 
 ?decl_ chg:insertedInto ?e.
 ?decl_ c:initializer ?rhs_.
 ?x_ chg:insertedOrGrafted ?f.
 ?x_ src:parent ?f_
 ?x_ c:declaredBy ?decl_.
 ?a src:parent ?f.
 ?a chg:movedTo ?rhs_.
 ?f a ?cat. ?f_ a ?cat. 
}

…
T' x' = A' ;

F'(x' );
…

…
F(A);
…

inserted

moved

inserted

Fig. 6. A SPARQL Query for Local Variable Extraction

powerful and is one of the main reasons we have chosen
the Semantic Web technologies for implementing the proposed
method.

III. EXPERIMENTS

In this section, we explain experiments of change pattern
identification for the Linux kernel release versions from 2.6.18
through 2.6.39 taken from a local clone of the mainline Git
repository13. All experiments described in the rest of the paper
were done on a workstation with 8-core Intel Xeon processor
(3.0 GHz) with 64GB RAM. Since each version has several
millions of source lines of code, the number of generated facts
is large. It took about 16 hours for Diff/TS to compute AST
differences for 21 adjacent version pairs. More than 4 billion
facts were generated and it took about 98 hours for Virtuoso to
load them. In addition to facts about AST changes reported by
Diff/TS, facts about control flows and call relations are used for
the second and the third experiments, respectively. Details of
additional facts will be explained in the corresponding sections.

A. Identifying Non-Essential Changes

We first show how we can identify cosmetic change pat-
terns of a program by querying the factbase. We use as an
example the local variable extraction pattern explained by
Kawrykow and Robillard for Java programs [4]. The pattern
introduces temporary variables for storing intermediate results
to simplify expressions. Figure 5 shows such an example found
in the Linux 2.6 kernel.

The pattern can be specified by the SPARQL query shown
in Figure 6 with a diagram illustrating the idea. The query
sentence specifies a situation where an entity ?a in the original
version is moved to the initializer position of a new variable
declaration ?decl inserted in the later version, and the declared
variable ?x of ?decl is placed under ?f , which is of the
same syntactic category as ?f. Although the last clause does
not guarantee that ?x substitutes for ?a, the query sufficiently
expresses the concept of local variable extraction. Note that

13https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/
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static int validate_nla(struct nlattr *nla,
               int maxtype,

struct nla_policy *policy)
{
  struct nla_policy *pt;
  int minlen = 0, attrlen = nla_len(nla);

     /* … */
  switch (pt->type) {
  case NLA_FLAG:

if (attrlen > 0)
     return -ERANGE;
break;

     /* … */
  }

  return 0;
}

moved

moved
inserted

inserted

deleted

static int validate_nla(struct nlattr *nla, 
               int maxtype,

struct nla_policy *policy)
{
  struct nla_policy *pt;
  int minlen = 0;
     /* … */

  if (pt->type == NLA_FLAG && nla_len(nla) > 0)
return -ERANGE;

     /* … */
  return 0;
}

Fig. 7. A Complex Non-Essential Change Found in Linux 2.6 Kernel

  

struct inode *gfs2_ilookup(struct super_block *sb, u64 no_addr) {
     unsigned long hash = (unsigned long)no_addr;
     return ilookup5(sb, hash, iget_test, &no_addr); 
 }

struct inode *gfs2_ilookup(struct super_block *sb, struct gfs2_inum_host *inum) {
     return ilookup5(sb, (unsigned long)inum->no_addr,
                              iget_test, inum);
}

Fig. 8. A Subtle Change in Linux 2.6 Kernel

we can not use chg:graftedOnto for the first chg:insertedInto in
the query since chg:graftedOnto specifies addition of a whole
subtree.

The query is processed by the RDF store (Virtuoso) popu-
lated by more than 4 billion facts in about 12 seconds to gener-
ate 365 matched instances. We have manually inspected each
one of them and judged 331 correct. The precision rate is about
91%. We only raised a “correct” flag when it is obvious that
A is substituted by x′ as in Figure 6. However, it is not easy
since the difference between two adjacent versions does not
always reflect changes occurring in between. Figure 7 shows
such a case that is judged correct, where the context of original
refactoring goes through a series of complex changes. Thanks
to Diff/TS’s code tracking abilities, we could still recognize a
refactoring instance for this case. By contrast, Figure 8 shows
a case that was not judged correct. We may suppose that a
function argument was modified after a local variable hash had
been introduced. However, all changes occurred in one commit
and we could not judge if this was correct or not. There were
21 instances like this in 34 cases that were not judged correct.
The remaining 13 were false positives caused by Diff/TS. Since
tree differencing is a failure free computational process, it may
generate incorrect edit sequences that relate remote entities
when the gap between adjacent versions is too large.

The experiment shows that the proposed method can
identify fine-grained change patterns not just precisely but
also efficiently for a large-scale software system such as
the Linux kernel. We have also queried other non-essential
changes such as local variable rename and rename induced
modification [4]. The numbers of reported instances are about
30,000 and 7,900 respectively. Due to large numbers, we were
unable to check precision rates for these cases. Since the
accuracy of AST differencing directly affects these precisions,
we plan to evaluate the performance of Diff/TS in a separate
experiment.

@@
type T; identifier i,fld;
expression E; statement S;
@@
- T i = E->fld;
+ T i;

... when != E
when != i

if (E == NULL) S
+ i = E->fld;

-u16 *mateid = mate->id;
+u16 *mateid;
u8 mask = hwif->ultra_mask;

if (mate == NULL)
goto out;

+mateid = mate->id;

Fig. 9. A Simple Semantic Patch Example

B. Identifying Bug Fix Patterns

In this section, we present how we can grasp bug fixing
changes by querying the factbase. We use an example of
semantic patches offered by the Coccinelle tool [8]. Semantic
patches are intended to fix the same programming errors at
once in different contexts. A semantic patch is written in
a tailored language called SmPL and the patch interpreter
performs program matching and transformation by following
statement level control flows generated by the parser.

Figure 9 shows (in the left box) a simple semantic patch
for moving record pointer access from initializing declarations
to the subsequent lines of NULL checks14. The lines between
“@@” declare meta variables and the following part specifies
defect code patterns and how to modify them. An example of
the patch application in a diff format is shown in the right box.
The meaning of the patch should be clear except for the part
concerning the dots “...” and the when clauses. Intuitively,
the dots are matched by any sequence of code and “when
!=” indicates patterns that should not occur in the matching
code.

Since we use the same C parser module as the Coccinelle
tool, which can provide statement level control flows, we only
need to introduce a new predicate c:successor whose domain
and range are both c:Statement, and modify the parser so that it
can export facts about control flows using the predicate. About
60 million CFG facts were added to the factbase at this point.

To identify change patterns implied by the semantic patch,
we use a SPARQL query partially shown in Figure 10. The
graph pattern in lines 1 to 15 will detect a NULL check ?if for
an expression having a name ?ename in a function ?fdef. The
pattern in lines 16 to 24 finds an access to a record pointer
of a struct having the same name ?ename in an initializing
declaration ?decl in the same function ?fdef. Note that we use
SPARQL Property Paths p/q where (s, p/q, o) means (s, p, s′)
and (s′, q, o) for some s′. The predicate chg:correspondsTo at
line 25 indicates that ?decl is the next version of ?decl, where
chg:correspondsTo is a super property of mapping predicates
such as chg:movedTo and chg:mappedTo.

The query sentences in lines 27 to 36 ensure that statements
?decl and ?if are in the same control flow and that the accessed
struct and the declared variable do not appear in a statement
between them as specified in the original semantic patch.
The FILTER clause limits solutions to the ones satisfying the
condition and the keyword UNION specifies alternative matches
in the solutions. Although property path expressions p+ for
specifying transitive closure of p are used in the figure, we
actually used an optional function of Virtuoso to exclude loop

14http://coccinelle.lip6.fr/impact linux.php
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1 ?e a c:Expression ;
2 src :parent ?cond ;
3 c:name ?ename .
4 ?cond c:conditionOf ? if .
5 ? if a c:IfStatement ;
6 c:inFunction ?fdef .
7 { ?cond a c:Eq.
8 ?null a c:Ident ;
9 src :parent ?cond ;

10 c:name "NULL" .
11 FILTER (?ename != "NULL")
12 } UNION {
13 ?cond a c:Negation;
14 src : children (?e) .
15 }
16 ? ini a c:RecordPtrAccess ;
17 c:memberName ?fld ;
18 c:record/c:name ?ename ;
19 src :parent+ ?decl .
20 ?dtor a c:Declarator ;
21 c:name ?vname ;
22 src :parent+ ?decl .
23 ?decl a c:Declaration ;
24 c:inFunction ?fdef ;
25 chg:correspondsTo ?decl ;
26 c:successor+ ?if .

27 FILTER NOT EXISTS {
28 { ?x a c:Expression ;
29 c:name ?ename .
30 } UNION {
31 ?x a c:Ident ;
32 c:name ?vname . }
33 ?x c:inStatement ?stmt .
34 ?decl c:successor+ ?stmt .
35 ?stmt c:successor+ ?if .
36 }
37 FILTER NOT EXISTS {
38 ? ini a c:RecordPtrAccess ;
39 src :parent+ ?decl .
40 }
41 ?decl a c:Declaration ;
42 c:inFunction ?fdef .
43 ? if a c:IfStatement ;
44 c:inFunction ?fdef .
45 c:successor+ ?astmt .
46 ? if chg:correspondsTo ?if .
47 ?astmt a c:ExpressionStatement .
48 ?a a c:Assign ;
49 c:inStatement ?astmt ;
50 c: lhs /c:name ?vname ;
51 c:rhs/c:memberName ?fld;
52 c:record/c:name ?ename .

Fig. 10. A Query for Identifying Semantic Patching (Excerpts)

18	   19	   20	   21	   22	   23	   24	   25	   26	   27	   28	   29	   30	   31	   32	   33	   34	   35	   36	   37	   38	   39	  

isicom_close	  
tga7_pci_unregister	  
free_shared_mem	  

mace_interrupt	  
write_bulk_callback	  

ebt_dev_check	  
sixpack_ioctl	  
mkiss_ioctl	  
lpfc_online	  

pxa2xx_spi_remove	  
lbs_stop_card	  

ph_state_change	  
tmio_mmc_data_irq	  

agnx_pci_remove	  
write_reg	  

write_reg_fp	  
drm_put_dev	  
tun_chr_poll	  

cx18_dvb_start_feed	  
hysdn_rx_netpkt	  
drm_7_helper_...	  
mvs_abort_task	  

em28xx_copy_vbi	  
verify_bbt_descr	  

semanGc	  patch	  
appllicaGon	

Fig. 11. Tracking Bug Fix Patterns

paths efficiently for the experiment. The FILTER clause in lines
37 to 40 indicates that there is no access to ?fld of ?e in ?decl .
Finally, the pattern in lines 43 to 52 ensures that the deferred
assignment of the record access to a variable named ?vname
follows the next version of ?if.

Virtuoso took about 90 minutes to report 24 change in-
stances over versions from 2.6.18 through 2.6.39. Figure 11
shows traces of the defects up to the point of modification
identified by the query shown in Figure 10. Each bar represents
a lifetime of the defective code. The vertical axis represents
defect containing functions and the horizontal axis represents
minor version numbers. Note that in this particular example, no
function contains multiple defects and a function determines
the defective code.

It has been reported that the modification made by a
semantic patch in Figure 9 was adopted in the official kernel
source14. In fact, change instances found by the query in
Figure 10 contain all such cases except for the ones that
were introduced and fixed between release versions. They are
marked by a circle in the figure.

It appears that the same defect was introduced several times
before and after the semantic patch application, which may
have been fixed in a traditional way. By slightly modifying the
query, we found that 27 instances of the same defect remained
uncorrected until 2.6.39, all of which were introduced after
2.6.33. We also found false positives, that is, the code segments
that match the specified pattern but do not need to be modified
at all. These were caused by imprecise control flows computed
by the parser and a simplistic code pattern specification in the
semantic patch.

Now we understand that maintaining a generic patch set is
a difficult task. The same defect keeps getting introduced over
and over and the code pattern that works fine with the current
version may not work or even be wrong for the later versions.
We believe that our query based approach helps to evolve a
patch set according to source code changes. For this, we may
have to develop a tool to translate code excerpts into SPARQL
sentences automatically as queries often get too verbose.

C. BKL Pushdown in Linux Kernel 2.6

In this section, we explain our attempt at comprehending
so-called BKL pushdown, which is a community wide effort
to purge an obsolete locking mechanism from the entire Linux
kernel tree.

The Big Kernel Lock (BKL) was introduced to make Linux
run on symmetric multiprocessor systems by allowing only
one processor to run kernel code at any given time. It had
many non-traditional features as a global spinlock, which made
easier the transition from kernel version 2.0 to 2.2. However, it
became a major overhead and various light-weight locks were
added to the kernel to replace the BKL. The BKL pushdown
is the final maneuver toward the purge, which was started
before the release of the version 2.6.27. It aimed to push the
acquisition of the BKL down to the lower-level driver code
so that BKL calls could be audited independently. Eventually,
such pushed down calls would be deleted or replaced by calls
to more efficient local locks.

The BKL pushdown is characterized by three steps of
pairwise insertion and deletion of lock/unlock calls explained
below. To abstract descriptions from the BKL, we assume a
function pair, tic() and tac().

• PUSHDOWN. For each pair of tic/tac calls in upstream
kernel areas, the same pair of calls is inserted in (many
different) functions, in downstream subsystem directo-
ries, that are reachable from a function, say foo(), called
between the original calls to tic() and tac().

• DELETE. The original calls to tic() and tac() are deleted
upstream when it is safe to do so.

• PURGE. The inserted pairs of tic/tac calls are deleted
or replaced by calls to other lock functions, say tic’()
and tac’().

Figure 12 illustrates the situation. It is only assumed that the
PUSHDOWN step precedes the steps DELETE and PURGE.

Our aim here is to demonstrate how we can detect such
global refactoring efforts without knowing technical details
of the event. First of all, we need facts about function call
relations since the term “reachable” above clearly refers to
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fun1() {
    ...
  tic()
    ...
  foo()
    ...
  tac()
    ...
}

fun2() {

    ...

}

fun2() {
    ...
  tic()
    ...
  tac()
    ...
}

version X version Z'

fun1() {
    ...
  tic()
    ...
  foo()
    ...
  tac()
    ...
}

fun2() {
    ...
  tic'()
    ...
  tac'()
    ...
}

fun2() {
    ...
  tic()
    ...
  tac()
    ...
}

version Z

fun1() {
    ...
  foo()
    ...
}

fun1() {
    ...
  foo()
    ...
}

delete
insert

fun2() {
    ...
  tic()
    ...
  tac()
    ...
}

version Y

fun1() {
    ...
  tic()
    ...
  foo()
    ...
  tac()
    ...
}

fun2() {
    ...
  tic()
    ...
  tac()
    ...
}

fun1() {
    ...
  foo()
    ...
}

insert

mayCall+

delete

version X' version Y'

PUSHDOWN DELETE PURGE

successor+

successor+

Fig. 12. BKL Pushdown Steps

it. However, creating precise call graphs for the entire Linux
kernel code is demanding due to abundant use of function
pointers and struct instances having function pointer members
passed as function arguments.

After surveying available tools, we chose a compiler tool
called ncc4. Although the tool does not appear well maintained,
it worked fine after we fixed several serious bugs such as
null pointer dereferences and made modifications for GCC
extensions. Ncc works on ASTs created by its own C parser
to resolve static values of function pointers. It relies on
pre-defined value propagation patterns and has a simple but
effective symbolic evaluator. It is well tested against early
versions of Linux 2.6 and works remarkably well for the later
versions including 3.x.

Since ncc relies on GCC for preprocessing C source files,
we had to actually build the whole kernel for each version.
For this, we used virtual machines to built the kernel in
the original old environments and created call graphs in full
length.15 To represent facts of call relations, we introduced a
new predicate ncc:mayCall whose domain and range are both
c:FunctionDefinition. Since call graphs generated by ncc refer
to a function by its name, line range, and file location, we
had to match the function name, the line range, and the file
location with those of a c:FunctionDefinition entity identified by
Diff/TS for integrating facts. Overall, we added approximately
13 millions of call graph facts in the factbase.

We start analysis by creating what we call a code contin-
uum [6] for each potential callee function. A code continuum
of a named entity e such as a function definition is a list of pairs
(v, n) such that e has name n in version v. A code continuum
is constructed by tracing mapping of source code entities
between adjacent versions created by Diff/TS as explained in
Section II-A. Also in the process, we check if entity references
such as function calls are renamed consistently to create
accurate continuum as much as possible. This is necessary
for tracing renamed functions.

Firstly, we identify groups of functions, calls to which are
inserted simultaneously in the same functions in subsystem
directories by querying the factbase. We chose drivers and
sound sub-directories for this. At the same time, we use

15Although releases from 2.6.12 through 2.6.39 are available from the
repository, we dropped the earliest 6 releases due to the lack of time for
preparing very old environments.

the git-blame command to identify commits of insertion by
specifying line ranges of inserted function calls. From each
group, we extract pairs of functions that are in the same control
flows of c:successor and that will be deleted or replaced in the
later versions (the PURGE step). These function pairs comprise
pushdown candidates such as tic() and tac() in Figure 12. Let
us call them the PUSHDOWN pairs. We use SPARQL query
for extracting function pairs and the git-log command to check
whether the pairs are deleted/replaced in later commits. A
commit of the PURGE step is identified for each PUSHDOWN
pair at this point. The reason for using Git commands is
not only to identify commits of changes but also to explore
hybrid analysis involving both factbases and repositories. The
identified commits are used to evaluate the correctness of
reported instances.

Secondly, we compute the DELETE pairs of functions,
calls to which are connected by c:successor and deleted si-
multaneously in the same functions in directories other than
drivers and sound, by querying the factbase. We also use the
git-log command to locate commits of the DELETE step for
evaluation purpose.

Finally, we compare the PUSHDOWN pairs and the
DELETE pairs to determine overall candidates for the BKL
function pairs. We do this by, for each pair of functions con-
tained in both PUSHDOWN and DELETE, checking if their
call site functions, such as fun1() and fun2() in Figure 12, are
reachable by function calls. Note that we have approximated
the PUSHDOWN step as we only check reachability between
functions instead of reachability from inner calls, such as a call
to foo() in Figure 12. This is because ncc does not provide any
information about call sites, which is difficult to recover when
function pointers are present. It implies a risk of overestimating
candidate pairs.

This part is done by scripting SPARQL queries for
ncc:mayCall+ reachability over common elements of the PUSH-
DOWN pairs and the DELETE pairs. We use Python for this
by requiring the following conditions:

• The PUSHDOWN step precedes the DELETE step.

• The call sites are reachable within or equal to 10 hops.

• For each candidate pair, the number of files in which the
calls to the pairs are inserted (in the PUSHDOWN step)
is larger than the number of files in which the calls are
deleted (in the DELETE step).

The second condition is for efficiency since reachability checks
take much time. The third condition reflects an intuition that
the number of calls increases as a global lock gets pushed
down to a driver directory.

We executed the overall procedure against the entire fact-
base. It took 19 hours, including 10 hours of git-log execution
for detecting commits of deletion, to compute a list of overall
candidate pairs of functions shown in the upper part of Table II.
Note that the “Matches” columun contains the numbers of
times the call site function for the candidate in the DELETE
pairs (such as fun1()) reaches the call site function for the
same candidate in the PUSHDOWN pairs (such as fun2()).

The BKL pair of lock kernel and unlock kernel is by far the
strongest candidate for the refactoring pattern illustrated in

358



TABLE II. PUSHDOWN CANDIDATES

Candidate Pair Matches Del Files Ins Files
lock kernel – unlock kernel (BKL) 3,646 266 323
spin unlock irq – spin lock irq 34 19 28
spin unlock irqrestore – spin lock irqsave 9 28 44
mutex lock interruptible – mutex unlock 5 13 23
down – up 5 11 22
unlikely – dev kfree skb any 3 3 10
clear bit – test bit 2 3 12
spin lock irq – spin unlock irq 2 3 9
kfree – mutex unlock 1 8 14
spin lock – spin unlock NA 501 82
mutex lock – mutex unlock NA 294 184
spin lock irqsave – spin unlock irqrestore NA 164 135
rcu read lock – rcu read unlock NA 138 2

TABLE III. PRECISION OF BKL PUSHDOWN ANALYSIS

PUSHDOWN DELETE PURGE
Commit # 113 94 87
Prec. Rate 94.69% 93.62% 89.53%

Figure 12. Other pairs are weak not only in numbers but also
in correspondence. For instance, the pair of spin unlock irq and
spin lock irq appears in the opposite order, which is caused by
approximation we made with the reachability in the PUSH-
DOWN step. The lower part of Table II shows the pairs that
were dropped because of the file number condition.

Let us concentrate on the BKL pair and check if the
points of insertion and deletion we found during the course
of the above analysis are correct. We do this by examining
the corresponding commit logs. We assume that the analysis
is “correct” if the commit log contains either word “BKL” or
“pushdown” and the associated diff file has lines indicating
that BKL functions are added or deleted by the first character
of a line (“+” or “-”). Let us call these the BKL pushdown
commits.

There are 263 commits identified for the three steps of
PUSHDOWN, DELETE and PURGE. Table III shows precision
rates for each. We verified that false positive are caused by
modifications for adjusting BKL calls rather than for pushing
them down such as bug fixes and refactorings. By inspecting
commit logs, we confirmed that there are 583 BKL pushdown
commits in the repository, which means that the overall re-
call rates is rather disappointing 45.11%. However, manual
inspection revealed that there are 150 commits performing
pushdown in other directories than we assumed such as net,
arch, kernel, fs and block, and there are 22 commits apparently
related to BKL pushdown but only remotely, such as bug fixes
and preparations for BKL pushdown. This means that the recall
rate could improve to 63.99%.

We examined remaining 148 false negatives. Main causes
include: 1) insertion or deletion of cycle kernel lock (36 times)
instead of BKL pairs, 2) failure of call graph generation
by ncc, 3) merged branches that are unreachable from the
relevant release versions, and 4) deleted files that contained
BKL calls. Note that cycle kernel lock only calls lock kernel and
unlock kernel for serialization purposes. As for the last, we did
not enable factbase enrichment in Section II-C for function
calls to keep the moderate number of facts.

We list additional information here. The average time
difference between the PUSHDOWN step and the DELETE steps
is 527 days. The function pair that replaced the BKL pair most
is mutex lock/mutex unlock followed by tty lock/tty unlock and

spin lock irqsave/spin unlock irqrestore. The average hop count
between call site functions of the common PUSHDOWN and
DELETE pairs is 7.65. The code continuum we constructed is
utilized for detecting renaming of lock kernel or lock kernel.

IV. RELATED WORK

We list below fundamental studies related to the proposed
method. We omit non-essential change identification [4] as it
is explained in Section III.

There are studies for extracting facts about source code
in mathematical form to process queries based on logical
frameworks. Holt proposed a system called Grok using bi-
nary relational calculus for manipulating graph models about
software architectures [11]. Hajiyev and others proposed a
system called CodeQuest based on Datalog for processing
recursive queries about software properties [12]. Both systems
concentrate on properties within the same versions of software
and do not help fine-grained change analysis as we do. Since
the Semantic Web technologies are based on description logic,
our method implicitly enjoys benefits of formal systems.

Xing and Stroulia explored factbase approaches to refac-
toring reconstruction [1]. They use a tool called JDevAn to
collect evolution facts from Java projects by matching entities
such as packages, classes, interfaces, fields and blocks based
on similarity in names and structures. A tool called UMLDiff
which infers difference between facts of a given pair of
revisions is used to detect refactoring patterns.

Prete and others report a refactoring reconstruction tool
called Ref-Finder [2]. Ref-Finder starts analysis by extracting
facts from given revisions using logical predicates to infer dif-
ference between revisions in the form of logical assertions and
applies predefined template logic rules to identify refactorings.

In both cases of JDevAn and Ref-Finder, information below
the level of statements are lost during the process of fact
extraction and hence changes concerning local variables and
program-controls can not be easily detected. Their methods
are also based on similarities and thresholds and prone to false
positives caused by renaming. Our method differs by directly
differencing ASTs rather than summarized facts.

ChangeDistiller [3] classifies Java source code changes
according to predefined taxonomy such as function parameter
addition and variable type changes, for better understanding
of evolving natures of software. It uses a semi-optimal tree
differencing algorithm on ASTs up to the level of program
statements and switches to textual similarity for comparing
statements for the sake of efficiency. Our approach differs by
employing a full-scale tree differencing tool Diff/TS [5], based
on an optimal algorithm, and by accepting ASTs of other
programming languages than Java such as C, C++, Python,
Verilog and Fortran.

There exist researches that define software ontologies for
the purpose of data exchange among tools [13], [14], [15]. Our
method focuses on ontologies for source code changes at the
low level of ASTs, which can be incorporated into high level
ontologies proposed before.

There are many attempts at creating and sharing ontolo-
gies for describing software projects as well as software
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engineering projects. DOAP (Description of a Project)16 is a
project to create an RDF Schema and an XML vocabulary
to describe open source software projects. It aims to facilitate
sharing information about software projects. Welty presents an
early attempt at aiding maintainer’s low-level discovery efforts
through ontologies for representing source code information
based on AST [16]. Our work can be seen as a modern
continuation of his work with advanced capabilities of change
analysis.

V. CONCLUSION

We have proposed a comprehensive method for analyzing
fine-grained source code changes by way of factbase queries.
Enhanced capabilities of our AST differencing tool helps us
to relate facts given by other analysis tools across versions
and to retrieve instances of detailed change patterns. The use
of standard Semantic Web technologies and the definition of
ontologies for AST level source code changes helped us to
simplify the process of fact integration and query processing.

To illustrate the capability of the method, we have pre-
sented experiments of fine-grained change pattern identifica-
tion conducted for the Linux-2.6 kernel source code. The anal-
ysis involves more than 4 billions of RDF triples about AST
changes, control flows, and call relations from release 2.6.18
through 2.6.39. The result of non-essential change identifica-
tion [4] and context sensitive code patching [8] showed that
the proposed method identifies fine-grained change patterns
in a precise and efficient manner. We have described analysis
of the so-called BKL pushdown, a community wide effort to
erase the obsolete locking mechanism from the entire kernel
tree. We have specified the pushdown pattern using facts about
control flows and call relations to successfully identify change
instances.

The proposed method allows users to concentrate on anal-
ysis of facts rather than generation of facts. As long as users
understand the concept of changes and the ontologies, they
can work entirely with queries to accomplish complex analysis
as in the examples. We hope this opens the door to “query
engineering” for software analysis, where queries are shared
and reused across boundaries of software projects and even
programming languages. For example, the query for local
variable extraction in Figure 6 can be easily adapted to Java
programs.

Since the factbase used in the paper occupies moderate 260
gigabytes, the proposed method may benefit a large number of
people by sharing factbases. We are planning on a project that
makes factbases and queries available for promoting collab-
orative work in software change analysis. We hope that the
difficulties in using the SPARQL language will be mitigated
in the process of collaboration.

We list some of the limitations of the method here. First,
queries relying on facts about call relations and control flows
may produce imprecise results since the factbase contains
only static information of the program. Second, ontology
development is a slow process as we note that changes to
core ontologies will force a large amount of rework. Third,
using SPARQL is not easy. It is not yet popular in software

16https://github.com/edumbill/doap/wiki

engineering even though it is a well-established standard
Web technology. We need to create more incentives to learn
SPARQL for collaborative work in software analysis. Fourth,
not all changes are recorded in the factbase as we only work
on release versions of Linux. We plan to look into Git to
obtain commit level facts including verbal information such
as commit logs.
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