
Enhancing History-Based Concern Mining With
Fine-Grained Change Analysis

Masatomo Hashimoto and Akira Mori
AIST Tokyo Waterfront
2-3-26 Aomi, Koto-ku
Tokyo 135-0064, Japan

e-mail: {m.hashimoto,a-mori}@aist.go.jp

Abstract—Maintenance of large software projects is often hin-
dered by cross-cutting concerns scattered over multiple modules.
History-based mining techniques have been proposed to mitigate
the difficultly by examining changes related to methods/functions
in development history to suggest potential concerns. However,
the techniques do not cope well with renamed entities and may
lead to irrelevant information about concerns. The intricate
procedures of the methods also make the results difficult for
others to reproduce, utilize or improve.

In this paper, we reinforce history-based concern mining
techniques with fine-grained change analysis based on tree
differencing on abstract syntax trees. Source code changes are
recorded as facts over source code regions according to the
RDF (Resource Description Framework) data model so that the
analysis can be performed in terms of factbase queries.

To show the capability of the method, we report on an
experiment that emulates the state-of-the-art concern mining
technique called COMMIT using our own change analysis tool
called Diff/TS. A comparative case study on several open source
projects written in C and Java shows that our technique improves
results and overcomes the language barrier in the analysis.

I. INTRODUCTION

Maintenance of large software projects is often hindered by
cross-cutting concerns scattered over multiple modules such
as caching, logging, and authentication. History-based mining
techniques have been proposed to mitigate the difficultly by
examining changes related to methods/functions in devel-
opment history to suggest potential concerns. However, the
techniques do not carry out detailed change analysis to track
renamed source code entities across versions and may report
irrelevant methods/functions as part of candidate concerns.

On the other hand, the intricate procedures of history-based
methods make the results difficult for others to reproduce,
utilize or improve. One has to collect change histories from
source code management systems such as CVS and SVN and
process source files to extract changes related to methods/
functions before applying his/her own technique for concern
mining. It is a demanding task considering the volume of
changes involved in a large project and the precision needed
for analyzing the source code. The difficulty lead to limited
use and segregation of methods since preparing tools needed
for target projects and programming languages takes too much
effort from developers and maintainers. In this regards, we
believe that generation and analysis of facts must be separated

in a way that third-party users can access the database of facts
(called the factbase) with reasonable costs of initial learning.

In this paper, we propose a method for recording source
code changes as facts over textual regions according to the
RDF (Resource Description Framework) data model to allow
analysis to be performed in terms of factbase queries. We apply
the method to history-based concern mining by reinforcing the
techniques with a fine-grained change analysis based on tree
differencing on abstract syntax trees. To show the capability
of the method, we report on an experiment that emulates the
state-of-the-art concern mining technique called COMMIT [1]
using our own change analysis tool called Diff/TS [2]. A
comparative case study on several open source projects written
in C and Java shows that our technique improves the results
and overcomes the language barrier in the analysis.

To summarize, our contribution is twofold:

• allowing history-based analysis to be performed at the
level of factbase queries, independent of particular pro-
gramming languages and models of dependencies, and

• improving history-based concern mining techniques by
integrating a fine-grained change analysis into the fact-
base.

The rest of the paper is organized as follows. Section II
explains the method of fined-grained change analysis and
construction of factbase before overviewing the mining tech-
nique of COMMIT in Section III. The emulation of COMMIT
in our setting including the enhancement in change analysis
is presented in Section IV and the result of an experiment
is reported in Section V. After related work is reviewed in
Section VI, we conclude in Section VII with future plans.

II. FINE-GRAINED CHANGE ANALYSIS AND FACTBASE

Our aim is to facilitate collaborative efforts in software evo-
lution analysis in a way that is independent of specific tools,
platforms, protocols and languages. This lead us to an idea
of representing facts about source code as properties/relations
on textual regions in source files. This is probably the most
universal and independent way of sharing and exchanging
information about source code since no tools can not point the
code regions of their interests and users normally comprehend
source code by browsing its texts.

Fig. 1. Program P0

Fig. 2. A Fact Graph

A. Facts About Source Code

we define several basic notions to materialize the idea.
A source code entity, or simply entity, is specified by a
code region denoted by ⟨fid , ps, pe⟩, where fid denotes a file
identifier and ps and pe denote a start position and an end
position in the file, respectively. We employ throughout the
rest of the paper hash values to identify files and pairs of
line and column numbers to indicate positions in the file. For
example, a boxed method invocation in a program P0 shown
in Fig. 1 is specified by

⟨cac5bc1f87b89c835aebbae4b7c6e2d7, (7, 14), (7, 27)⟩,

where MD5 (Message-Digest algorithm 5)1 is used to compute
the hash of the source file containing P0. Note that we can use
any hash algorithm as long as it produces no hash collision
among source files to be analyzed and that the same algorithm
is used in the whole analysis.

We define facts based on the RDF data model. A fact is
denoted by a triple (s, p, o), where s, p, and o denote a subject,
a predicate (or a property), and an object, respectively. We may
specify the tool that provides a subject, a predicate, an object,
or the whole fact by a subscript symbol to them.

Example 1: Suppose that a tool t provides a fact stating
that the if-statement in Fig. 1 is in the method compute.
The fact is represented by

(⟨fid , (4, 4), (7, 28)⟩, in method, ⟨fid , (2, 2), (9, 2)⟩)t,

where fid = cac5bc1f87b89c835aebbae4b7c6e2d7.
According to the RDF data model, a set of facts forms a
directed graph, where each triple is represented by a (sub-
) graph s

p−→ o. Fig. 2 depicts an example of a fact graph,
where r0, r1, and r2 denote code regions.

If we integrate facts generated by different tools, we must
consider alignment of code regions in order to increase oppor-
tunities to combine facts. This is necessary because an entity
is not always uniquely specified by a single code region. It is
possible that different tools refer to the same code entity by

1http://www.rfc-editor.org/rfc/rfc1321.txt

Fig. 3. Alignment of Regions

Fig. 4. Diff/TS System

presenting different code regions. In other words, identification
of code regions and/or models of code structures vary from
tool to tool.

Suppose that we integrate f1 = (r0, in method, r′0)t0 and
f2 = (r1, in method, r′1)t1 , where t0 ̸= t1. If r′0 and r′1 are
exactly the same code region, say r2, then f1 and f2 form a
combined graph, which means that r0 and r1 are in the same
method as shown in Fig. 2. However, we cannot combine f1
and f2 when r′0 and r′1 are disjoint since it is not adequate
at all to regard r′0 and r′1 as representing the same source
code entity in this case. Our region alignment tries to find an
approximated region r′ containing both r′0 and r′1 when they
intersect as shown in Fig. 3. Since this paper only concerns a
single tool Diff/TS, there is no need for aligning code regions
and the technical details are omitted. They will be published
elsewhere.

B. Diff/TS: A Fine-Grained Change Analysis Tool

Diff/TS is a fine-grained differencing system for tree struc-
tures, specifically tailored for abstract syntax trees (ASTs) of
source code. Diff/TS consists of four components: ParserInter-
face, DiffEngine, FactExporter, and DiffViewer. An overview
of Diff/TS is depicted in Fig. 4. Explanations of each compo-
nent will follow.

ParserInterface mediates parsers and DiffEngine. Since we
accept multiple programming languages, multiple parsers are
present in Diff/TS. There are two types of parsers: internal and
external. We have built our own internal parsers for Python and
Java and have adapted the C parser of Coccinelle2 program
matching and transformation engine. All internal parsers are

2http://coccinelle.lip6.fr/

able to cooperate with DiffEngine without having to serialize
AST data. Internal representations are passed to DiffEngine
directly. External parsers are required to produce ASTs in
an XML format. Currently, Diff/TS works together with a
C/C++ parser built on libraries developed in CDT (Eclipse
C/C++ Development Tooling) project3 as well as a C parser
developed in CIL (Infrastructure for C Program Analysis and
Transformation) project4. Diff/TS uses XML parsers internally
for processing ASTs provided by external parsers and native
XML documents.

DiffEngine lies at the core of the system and receives a
pair of labeled ordered trees and calculates an edit sequence
of edit operations, namely, delete, insert, rename, and move
that transforms one tree into another. We illustrate an example
of differencing by a small Java code shown in Fig. 5, due
to Kawrykow and Robillard [3]. In Fig. 6, a set of tree edit
operations between (ASTs of) versions N and N+1 is shown
by shaded ellipses, as computed by Diff/TS. Note that only
changes between shaded areas in Fig. 5 are depicted. The
nodes that are unchanged or renamed are marked mapped and
the node groups that are moved, inserted, or deleted are marked
accordingly. It is notable that Diff/TS is able to detect a move
of the method invocation size() accompanied by a rename
of l to list. Diff/TS achieves the detection of move by
elaborated post-processing of edit sequences [2]. Precise tree
differencing is a major tool in our approach.

Fig. 5. A Small Java Code (due to Kawrykow and Robillard [3])

FactExporter exports facts about pieces of source code and
changes between them. Code facts of a piece of source code
are extracted by a parser for the language in which the source
code is written. Examples of code facts will be given in
Section IV. Change facts are derived from low-level edit
sequences computed by DiffEngine. We give several basic
change facts with short descriptions. Let R be the set of code
regions.

(s, added to, o) (s ∈ R, o ∈ R)
⇒ s is added to a code region to which o is mapped.

(s, removed from, o) (s ∈ R, o ∈ R)
⇒ s is removed from a code region that is mapped to o.

(s, renamed, o) (s ∈ R, o ∈ R)
⇒ s is renamed to be o.

(s,moved to, o) (s ∈ R, o ∈ R)
⇒ s is moved to o.

3http://www.eclipse.org/cdt/
4http://cil.sourceforge.net/

Fig. 6. Edit Operations Generated by Diff/TS on ASTs (Partial)

Fig. 7. DiffViewer

(s,modified, o) (s ∈ R, o ∈ R)
⇒ s is modified and corresponds to o.

Note that the object in (s, added to, o) mean mapped code
regions. The reason why we describe mapped code regions
for the fact is that we can express two pieces of information
in a single fact: s is added to a code region and o is mapped
to the region. Another kind of fact (s, removed from, o) is
interpreted similarly.

Edit sequences are visualized by DiffViewer. DiffViewer un-
derstands DiffEngine’s output format which describes relations
between ASTs and source code to overlay edit operations on
source code texts. Change related texts are colored to highlight
syntactic layout. For operations rename and move, “sticky”
lines are drawn to keep connections traceable between original
and modified parts. Fig. 7 has a screen image of DiffViewer.

III. HISTORY-BASED CONCERN MINING

In certain kind of software systems, common functionality
that spans different modules typically supports operations such
as caching, exception management, logging, and tracing. Such
functionality is generally described as cross-cutting concerns.
Developers need to know the locations of these concerns.
For example, if the code that writes to the logs is scattered

throughout a number of modules, and the requirements related
to these concerns change, they may have to update the relevant
code throughout the entire system. Concern mining techniques
support the identification of concerns in software systems.
Static techniques analyze source code, dynamic techniques
analyze execution traces, and history-based techniques analyze
changes in the source code repository. The techniques generate
concern seeds, which are sets of program entities that possibly
contribute to the implementation of a concern.

COMMIT (COncern Mining using Mutual Information over
Time) is a history-based concern mining technique proposed
recently. COMMIT analyzes the source code history to sta-
tistically cluster functions, variables, types, and macros that
have been changed together intentionally in each modified
function. Such clusters are further composed to form compos-
ite seeds according to the statistical measure of how closely
related program entities are, namely, mutual information. For
example, suppose that we have versions of small pieces of
C code shown in Fig. 8 which is taken from the original
paper of COMMIT. In the figure, bold text corresponds to
the addition or removal of program entities between two
contiguous versions. COMMIT will generate the seed graph
depicted in Fig. 9, where edges are placed between every pair
of program entities to which call or references have been co-
added or co-removed. Three boxes in the figure represents
clusters. Since lock, enqueue, unlock, and queue are
co-added in function client in Version 2, they are placed
in the same cluster. Note that lock2 and unlock2 are co-
removed, and then start_lock3, lock_data_queue,
lock_data_queue, and end_lock3 are co-added in
function front_end (renamed to be front_end2) be-
tween Version 2 and Version 3. Thus they are related to form
Cluster B. Simultaneous co-addition of lock_data_queue
and lock_data_queue in function back_end results in
an independent cluster (Cluster C).

It should be also noted that COMMIT creates redundant
edges represented by dashed lines in Fig. 9. These edges are
placed because COMMIT only roughly relates a bunch of
lock2 and unlock2 to another bunch of start_lock3,
lock_data_queue, lock_data_queue, and
end_lock3, although lock2 has been renamed to
start_lock3 and unlock2 end_lock3.

In the subsequent sections, we will describe how COMMIT
is enhanced by fine-grained change analysis and by factbase
facilities.

IV. IMPLEMENTATION

We have implemented COMMIT using Diff/TS and fact-
base facilities. An overview of the implementation, which
we call COMMIT/D, is illustrated in Fig. 10. COMMIT/D
is composed of the following modules: Diff/TS, Retriever,
StatisticalFilter, and Sorter.
Diff/TS Diff/TS computes changes between all contiguous
versions/revisions for a series of versions/revisions. Computed
changes are encoded into facts, and then loaded into a factbase.

Fig. 8. Versions of Small C Code (due to Adams and others [1])

Fig. 9. A Seed Graph Generated by COMMIT

Currently, Jena TDB5 RDF storage system is used for our
factbases.
Retriever Retriever constructs initial seed graphs by retriev-
ing co-addition/co-removal of program entities such as func-
tion/macro calls, types, and global variables from a factbase.
SPARQL queries for co-addition/co-removal in C and Java
programs, which we call QueryC and QueryJ, are shown in
Fig. 11.

SPARQL is a query language for searching graph patterns
in RDF factbases. Roughly speaking, SPARQL is an extension
of SQL with graph patterns described by a set of triples with
variables. For example, QueryC contains a graph pattern in the
WHERE clause, where an identifier prefixed by “?” denotes a
variable. It should also be noted that predicates and categories
are encoded into Uniform Resource Identifiers (URIs) based
on the RDF. Although typical SPARQL queries contain a

5http://openjena.org/TDB/

Fig. 10. COMMIT/D System

Fig. 11. Queries for Co-Additions/Co-Removals in C and Java Programs

lengthy mapping from prefixed names to URIs in the head,
such mapping is omitted in QueryC and QueryJ. We only show
below the meanings of the prefixes in the queries:

• dtsp: for predicates from Diff/TS,
• dtscp: for predicates from Diff/TS related to C programs,
• c: for syntactic categories of C programs,
• dtsjp: for predicates from Diff/TS related to Java pro-

grams, and
• java: for syntactic categories of Java programs.
We briefly explain QueryC. Regions from “#” to the end of

line are interpreted as comments. The variables ?entity, ?e,
and ?name denote the functions f that contain co-added/co-
removed function calls or references denoted by ?call ref,
the functions in the previous or the next version/revision
that correspond to f , and the names of the called functions,
respectively. The graph pattern of QueryC consists of boxed
sections A to E:

• A describes a pattern of changes,
• B describes relationships between ?call ref, ?entity, and

?e,
• C describes a pattern of function calls,
• D describes a pattern of references of global variables,

and
• E describes a pattern of references of types.

Note that QueryJ also consists of similar components to those
of QueryC. We give explanations of the C related predicates
that is present in QueryC. Let R be the set of code regions
and S the set of strings.

s dtscp:in function o (s ∈ R, o ∈ R)
=⇒ s is located in function definition o.

s dtscp:calls o (s ∈ R, o ∈ R)
=⇒ Function call s calls function o.

s dtscp:name o (s ∈ R, o ∈ S)
=⇒ The name of s is o.

s dtscp:refers to o (s ∈ R, o ∈ S)
=⇒ s refers to global (external) name o.

s dtscp:provides o (s ∈ R, o ∈ S)
=⇒ s defines global (external) name o.

In the graph pattern, keyword UNION is used to state mul-
tiple alternative graph patterns. Exactly one of the alternatives
must be matched by any query solution. If both branches of the
UNION match, two solutions are generated. Co-addition/co-
removal of entities are stated by using UNION patterns. For
example, A contains the following UNION pattern.

{?call ref dtsp:added to ?x} (1)
UNION
{?call ref dtsp:removed from ?x} (2)

Then (1) or (2) must be matched. If both match, solutions like

?call ref ?x
⟨fid0, (4, 4), (7, 28)⟩ ⟨fid1, (3, 0), (8, 0)⟩ solutions

...
...

for (1)

⟨fid2, (12, 2), (19, 20)⟩ ⟨fid3, (10, 0), (21, 0)⟩ solutions
...

...
for (2)

are generated, where fid0, fid1, fid2, and fid3 are file identi-
fiers.

By issuing QueryC, we obtain solutions (r, r′, n) for
(?entity, ?e, ?name), where r, r′ ∈ R and n ∈ S. We create
a partial map M from R × R to the sets of S as follows:
for each solution (r, r′, n), if N = M(r, r′) exists, then add
(r, r′) 7→ N∪{n} to M , or else add (r, r′) 7→ {n} to M . Then
the domain of M denotes a set of sets of co-added/co-removed
entities.

Finally, based on the detected co-added/co-removed sets
of entities, seed graphs are generated. A seed graph is an
undirected graph with edges between every pair of program
entities whose calls or references have been co-added or co-
removed.
StatisticalFilter StatisticalFilter calculates mutual informa-
tion for each pair of co-added/co-removed entities as in the
original paper of COMMIT. Mutual information is a statistical
measure of how closely related two entities are. In order to
calculate mutual information, we first calculate frequency of
entity pair (e0, e1), denoted by freq(e0, e1) as follows:

• Let c = 0.
• For each map entry {(r, r′) 7→ N} ∈ M , if N ⊆ {e0, e1},

then increment c.
• The value of c is the frequency of (e0, e1).

Similarly, we calculate frequency of entity e, denoted by
freq(e) as follows:

• Let c = 0.
• For each map entry {(r, r′) 7→ N} ∈ M , if e ∈ N , then

increment c.
• The value of c is the frequency of e.

Then we enumerate changed entities (functions) by another
SPARQL query:

SELECT DISTINCT ?entity WHERE {
?entity dtsp:category c:definition.
?entity dtsp:modified ?x.

}

We let the number of changed entities be C. Finally, mutual
information for e0 and e1, denoted by I(e0; e1), is calculated
as follows:

I(e0; e1) = log2

(
p(e0, e1)

p(e0)× p(e1)

)
,

where
p(x) =

freq(x)

C
, p(x, y) =

freq(x, y)

C
.

Once the mutual information between any two co-added/co-
removed entities is calculated, we weight each edge in the seed
graph with it.
Sorter Sorter orders the seeds first on the dimension, which
denotes the number of program entities contained in a seed,
then on the scattering value, which denotes the number of
unique calling functions over which the concern is scattered.
In practice, this means that cross-cutting concern seeds are
ranked much higher than modular concerns.

We regard it remarkable that a highly complex analysis
method such as COMMIT can be exposed to users in a

conceptually clear way. It will be much easier for third-party
users to explore further enhancement of the technique, for
instance. In fact, we have successfully applied COMMIT to
Java-projects, which was not even possible by the original
researchers. In this sense, we can say that the method has
overcome language barriers in software evolution analysis.
The difference between QueryC and QueryJ directly reflects
the difference between C and Java, that is, the difference
between functions/methods, global variables/fields and types/
classes. There may be other correspondence between these two
languages to consider, of course.

V. EXPERIMENT

In order to show the effectiveness of our technique, we
conducted an experiment on several open source software
projects. We investigate, in particular, the impact of fine-
grained rename detection on concern seeds. For that purpose,
we use an implementation of the original COMMIT called
COMMIT/D−. It is derived from COMMIT/D by omitting
rename detection. More precisely, we add the following lines
at the bottom of the statements for the change pattern (A) in
QueryC and the similar lines (with ?invok ref in place of
?call ref) for QueryJ in COMMIT/D:

UNION
{?call ref dtsp:renamed ?x}
UNION
{?x dtsp:renamed ?call ref}.

Adding these lines takes the same effect as regarding a rename
operation as a combination of delete and insert operations. We
apply COMMIT/D− and COMMIT/D to the sets of versions/
revisions, and then compare the mining results. To assess
the precision of rename detection of Diff/TS, we identify
instances of rename operations reported by Diff/TS that affect
the mining result of COMMIT/D, and then inspect the rename
instances manually.

For the experiment, a PC with a pair of quad-core Intel
Xeon CPU (2.93GHz) with 32GB RAM running under Mac
OS X 10.6.8 was used. We retrieved versions and/or (SVN)
revisions of the following projects:

• Apache Ant6: a build system for Java applications,
• JHotDraw7: a GUI framework for drawing editors,
• PostgreSQL8: a database management system, and
• Lighttpd9: a web server.

Apache Ant (Ant) and JHotDraw (JHD) are written in Java
and the others are written in C except that PostgreSQL
(PGSQL) contains JDBC driver code written in Java. For
each project, the numbers of source files, SLOCs computed
by SLOCCount10, and examined versions/revisions with their
numbers are shown in Table I, where SLOC and the number
of source files are counted for the latest version/revision. A
set of release versions and a set of revisions are both taken
for Lighttpd (LHTV/LHTR).

6http://ant.apache.org/
7http://jhotdraw.org/
8http://www.postgresql.com/
9http://www.lighttpd.net/
10http://www.dwheeler.com/sloccount/

TABLE I
TARGET SOFTWARE PROJECTS AND THE FACTBASES

Ant JHD PGSQL LHTV LHTR
SLOC 128 133 29 005 239 358 38 315 ←
src files 1 191 491 1 065 132 ←
vers/revs 45 294 21 24 2 150
ver/rev from v1.1 r18 v6.1 v1.4.2 r648
ver/rev to v1.8.2 r311 v7.1.3 v1.4.29 r2797
facts (M) 26.09 4.31 36.94 11.04 19.71
FB size (GB) 3.8 0.8 5.3 1.7 2.9
time required (h) 1.4 0.8 2.0 0.5 9.4

TABLE II
REPORTED SEEDS AND AFFECTING RENAMES

Ant JHD PGSQL LHTV LHTR
seeds CD− 348 70 496 38 59

CD 273 49 458 38 48
sum D CD− 2 090 197 1 868 123 199

CD 1 551 142 1 649 117 167
decrease (%) 25.8 27.9 11.7 4.9 16.1
av. D CD− 6.0 2.8 3.8 3.2 3.4

CD 5.7 2.9 3.6 3.1 3.5
av. SV CD− 2.8 1.0 1.0 1.0 1.0

CD 2.4 1.0 1.0 1.0 1.0
time (s) CD− 59 7 103 8 11

CD 46 6 65 6 8
affecting renames 739 46 382 15 51
valid renames 531 33 243 8 28
precision (%) 71.9 71.7 63.6 53.3 54.9

To build the factbases for the projects, we ran Diff/TS on all
contiguous versions/revisions of each projects. Table I shows
the numbers of facts (in megafacts) stored in the factbases,
the file system usage (in gigabytes) of the factbases, and
the time required (in hours) to build the factbases. Then
we applied COMMIT/D− and COMMIT/D on the factbases
with the following mutual information thresholds: 10.3 for
Apache Ant, 11.3 for JHotDraw, 13.6 for PostgreSQL, 10.1 for
Lighttpd (versions), and 10.9 for Lighttpd (revisions). These
values were determined to minimize the coefficient of variation
for the dimensions of the reported seeds by using a simple
exhaustive search technique as seen in the COMMIT paper.

Table II shows characteristics of concern seeds reported
by COMMIT/D− and COMMIT/D for the target projects. In
the table (and also in the remaining tables), the following
abbreviations are used: D for dimensions, SV for scattering
values, CD− for COMMIT/D−, and CD for COMMIT/D. It
should be noted that the sum of dimensions decreases for
each project. This implies that rename detection reduces the
amount of effort needed for inspecting concern seeds when
renamed entities does not contribute to generating them. On
the other hand, the number of seeds and the average dimension
do not always decrease. By comparing in detail concern
seeds generated by COMMIT/D− with those generated by
COMMIT/D, we noticed that seeds may appear, disappear,
merge, split, and shrink in unpredictable manners when we
ignore renamed entities in calculating seeds. For example, in
the case of JHotDraw, 12 seeds appear, 33 seeds disappear,
and 8 seeds reduce in dimension. As a result, the average
dimension increases while the number of seeds decreases.

TABLE III
IMPACT OF VALID RENAMES AND RENAMES REPORTED BY COMMIT/D

Ant JHD PGSQL LHTV LHTR
seeds 278 55 478 40 52
sum D (valid) 1 685 161 1 748 122 181
sum D (CD) 1 551 142 1 649 117 167
false positives 134 19 99 5 14

(%) 8.0 11.8 5.7 4.1 7.7

We also measured the precision of the rename detection.
First we identify the rename instances affecting seed gener-
ation, and then manually check the 1233 instances by using
DiffViewer. The result is shown in Table II. We found that
most of the false positives are due to the lack of semantic
information such as control/data flows, call relations, and
variable scopes. Since Diff/TS is a syntactic differencing tool,
there is a limitation in detecting those subtle renames. Suppose
that, for instance, a function definition F0 is removed from
one version, and another function definition F1 is added at
the same location as F0 in the next version. Syntactic tools
normally start by matching F0 with F1 even when F0 has
nothing to do with F1. We are currently working to incorporate
semantic information into rename detection. In Table III, the
impact of the renames, which we judged valid by manual
inspection, on the concern seed dimensions is compared
with that of the renames which COMMIT/D reported. Note
that the percentage of false positives in seed dimensions is
much smaller than that of irrelevant (false) rename instances.
Considering the decrease in sums of dimensions, it is fair to
say that rename detection has a positive effect in the overall
concern mining task.

The result of the experiment contains several interesting
examples in which rename detection contributed to reducing
concern seed members. For example, in version 1.4.11 of
mod_cml_lua.c of Lighttpd, a code fragment shown in
Fig. 12 (left) is changed to the other in version 1.4.12
(right). By manual inspection, we found that a call to
lua_open is renamed to a call to luaL_newstate,
and calls to luaopen_{base,table,string,math,io}
are merged into a call to luaL_openlibs. COMMIT/D−

reported a concern seed that contains all call sites above,
while COMMIT/D reported a seed that only contains
luaopen_{table,string,math,io}, which means that
redundant seed members has been removed. At the moment,
COMMIT/D can not suggest the merge. However, we should
be able to remove all the above call sites when semantic
analyzers such as a call graph generator are integrated in our
factbase. More powerful analysis may be performed to detect
the merge by the same way as the factbase queries explained
in the paper.

VI. RELATED WORK

We only mention researches that have direct connections
with our method.

Concern mining or aspect recommendation has been a
popular research topic in recent years. Static mining and

Fig. 12. Changed Code Fragments of Lighttpd

history-based mining are two major techniques based on
source code analysis. The static technique analyzes source
code of a version of software to extract seeds of concerns.
A Fan-in value, which is the number of unique callers of
each method/function, was first introduced by Marin and
others [4] and further generalized by Zhang and others [5]
to propose Clustering-Based Fan-in Analysis (CBFA). CBFA
tries to diminish effects of common utility functions that are
called too frequently, relies on textual similarity in names for
generating larger seeds by clustering methods/functions, and
ranks seeds by the sum of Fan-in values of method/functions
in the seed. Although Fan-in values are useful for quickly
assessing contributions of a method/function to concerns, it
does not provide enough information on how we classify
potential concerns. Nguyen and others focused on interactions
of methods/functions, that is, how they call others and how
they are called by others, to group and rank seeds by similarity
of interaction [6]. However, as the technique becomes more
complex, it becomes more difficult for others to use, maintain
or improve. For example, Nguyen and others use an AST-based
clone detection tool for measuring similarity. The process is,
in general, highly heuristic and specific to target projects and
programming languages.

Our approach, on the other hand, separates efforts of
analysis from the task of fact generation so that analysis
is done by way of queries to the factbase. For example, if
we needed Fan-in values, we would let static analysis tools
generate facts of call graphs and query callers. Even indirect
callers can be easily listed. If we needed to measure interaction
similarity, we would use facts of parse trees as well as those
of tree differencing obtained by specifying appropriate pair of
subtrees. Or more directly, we could let code clone detectors
report facts of clone regions. However, when we integrate facts
given by different tools, we have to perform region alignment
mentioned in Section II. Its technical details will be published
elsewhere.

The history-based mining technique was first adopted by
Breu and others [7], who proposed History-based Aspect
Mining (HAM). HAM clusters methods/functions that add or
remove a call to the same method/function, and groups to-
gether methods/functions that are called by the same cluster as
concern seeds. COMMIT [1] focuses on co-addition/removal
of calls to function and macros, references to global variables

and types in each added, modified, or removed function.
Co-addition/removal are valuated by mutual information to
generate seed graphs, in which pairs of functions connected
with edges having higher values represent how they coincide in
dependency changes. Ironically, these two techniques expose
language barriers in source code analysis. HAM is built for
Java-projects while COMMIT for C-projects. It is difficult to
compare or combine these two tools. On the other hand, as
demonstrated in Section V, our approach allows users to apply
similar query patterns to different programming languages,
such as Java and C. Our factbase is built around common
concepts concerning changes such as removal, addition and
renames, and is amenable to different languages. This will help
developers/maintainers to exchange and share analysis ideas in
the form of queries. Academic researches will benefit from the
method since reproduction and comparison of results becomes
easier if we share facts generated by own tools. We only have
to publish analysis results in factbase without needing to make
tools publicly available.

Now we turn to software analysis platforms based on fact-
base queries. One common approach to integrating the results
of different tools is to assume a common model of software.
OASIS [8] is a system for integrating information and services
among reverse engineering tools based on a domain ontology
and tool adapters. The ontology includes common concepts
about program structures such as “systems”, “modules”, “sub-
programs” and “variables” and relations among them such as
“containment” and “use”. Each tool maintains its own factbase
and tool integration is done by on-demand factbase filtering
and service brokerage.

FAMIX [9] is a model developed in the ESPRIT FAMOOS
project for representing object-oriented software systems up
to the granularity of program entities such as classes, meth-
ods and attributes in a language independent manner [9].
Moose [10] is an environment for reverse-/re-engineering
complex software systems that was initially built around the
FAMIX model. Moose maintains a factbase according to the
(meta-)model by which tools exchange information.

Evolizer [11], [12] is a platform for software evolution
analysis built within Eclipse11. Evolizer provides a set of
meta-models for representing software project data and cor-
responding tools for obtaining data from software repositories
including bug-tracking systems. Evolizer uses ChangeDistiller
for classifying changes between revisions. Currently, CVS/
SVN and the bug-tracking system Bugzilla are available as
data source repositories.

Kenyon [13] is a system designed to facilitate software
evolution research by providing a common set of solutions to
common logistical problems. It accesses software repositories
and stores extracted facts into a relational database with
extensible fact extractors. Kenyon is unique in providing an
origin analysis tool called Beagle for tracking source code
entities across versions considering merge/split of entities such
as functions, classes and files [14]. This feature is missing

11http://www.eclipse.org/

in Diff/TS. Kenyon does not seem to have a formally define
model of software.

SE-Advisor [15] attempts to make software engineering
activities less technical and more knowledge-centered by inte-
grating tools and resources using ontology-based reasoning in
semantic-web technologies. A formal ontology covering both
software artifacts and software evolution processes is defined
using the OWL-DL language12. Factbases are populated with
data collected from software repositories according to the RDF
data model, for which users can make SPARQL queries to
gather information.

SOFAS [16] is a distributed and collaborative platform to
enable inter-operation of various software analyses using web-
service technologies. Analyses are offered as web services
and can be combined via the software analysis broker to
achieve more complex tasks. Software analysis ontologies are
defined for data exchange between services which include
an issue tracking ontology, a version control ontology and a
source code ontology based on FAMIX. The ontologies and
the factbase are constructed in the same ways as SE-Advisor.

Among these tools, OASIS and SOFAS assume distributed
factbases, owned and accessed (via brokers) by individual
tools, while others assume a centralized factbase directly
accessed by each tool. Since we advocate collective efforts
in software evolution analysis in the same sense as Linked
Data [17], our method should not depend on a centralize
factbase tied to specific analysis platform. Since we wish to
accommodate a wide range of source code analysis tools, our
method should not be bound by models of programs specific
to certain programming languages. However, meta-models of
software evolution should be used for incorporating facts of
other software artifacts than source code in our method. We
believe that the approach takes off early once we find a way
to integrate queries for distributed factbases.The web-service
based approach of SOFAS might be relevant in this regard.

iSPARQL [18] is an extension of the SPARQL query lan-
guage that allows RDF factbase queries for similarities. Users
can specify similarity measures such as Levenstein distance
and similarity conditions in the extended queries. iSPARQL
was successfully applied for software evolution analysis tasks
such as code smell detection and metrics calculation by
preparing ontologies similar to that of SOFAS and similarity
measures suitable for software entities such as Levenstein
distance, tree edit distance and graph similarity [19]. The
studies of SE-Advisor and iSPARQL share the idea of “query
based analysis of software evolution” with our research. Our
approach differs in accepting facts in arbitrary granularity of
code since it uses textual regions for representing source code
entities.

VII. CONCLUSION

Summary
We have presented a method for recording source code

changes as facts over textual regions according to the RDF

12http://www.w3.org/owl/

(Resource Description Framework) data model to allow anal-
ysis to be performed in terms of factbase queries. The method
advocates collective efforts in software evolution analysis in
the same spirit as Linked Data [17] with emphasis on “query
based analysis”.

We have explained application of the method to history-
based concern mining by reinforcing the techniques with a
fine-grained change analysis based on tree differencing on
abstract syntax trees. To demonstrate the capability of the
method, we have reported on an experiment that emulates the
state-of-the-art concern mining technique called COMMIT [1]
using our own change analysis tool called Diff/TS [2]. A
comparative case study on several open source projects written
in C and Java shows that our technique improves the results
and overcomes the language barrier in the analysis. It is
remarkable that similar SPARQL query patterns are used to
find cross-cutting concerns in C-projects and Java-projects
according to the mining technique in use.

We envision the world where tool developers publish their
analysis results and curious users try elaborated queries pos-
sibly with help from others providing custom queries. This
will revolutionize the process of software analysis because
practically anyone in the world can make significant contribu-
tions without needing complex hardware or software. All this
can occur over the Internet using standard web technologies
such as RDF and SPARQL. It will also benefit academic
researches since it becomes much easier to reproduce and test
experimental results.
Threats to Validity

As explained in Section III, intervals of change analysis
affect the results of mining since identification of co-addition
and co-removal of method/function calls is crucial in gener-
ating seeds of concerns. In section V, we analyzed change
between releases and SVN change sets, which may be too
coarse or fine for accurately extracting concerns. We may have
to compare results with intermediate time intervals. We may
also have to consider code ownership when we process release
versions. This can be done by adding facts of ownership and
modifying query patterns. However, the main purpose of the
paper is to demonstrate effects of incorporating fine-grained
change analysis into COMMIT, which is not severely affected
by time intervals and code ownership.

We have observed in Section V that treating renamed
entities as the same old ones prevents generating irrelevant
seeds. However, there are cases where renames occur when
concerns become explicit, such as a standard printf()
function replaced by a newly defined log() function. In
our approach, log() is identified with printf(), which
makes the introduction of a logging concern difficult to detect
since printf() appears in many places in the source code.
On the other hand, COMMIT treats the rename as deletion of
printf() and insertion of log(), which may lead to gen-
eration of useful seeds involving log(). A concrete example
of this case is found for function log_error_write() of
Lighttpd. Unfortunately, log_error_write() appears in
too many places and failed to reach the top ten seeds we

calculated. We can rescue this particular case by examining
insertion of the definition of log(), which is achieved by
adding one UNION clause in the SPARQL query shown in
Fig. 11.

The COMMIT paper does not describe their underlying
techniques in full detail, especially its ability to track renamed
entities across versions. From the context, we assumed that
COMMIT tries to identify renamed entities by examining
entities that have been removed and then added depending
on the context. From our experience, this approach is very
unstable and prone to false positives. While the results of the
experiments shown in Section V support our observation, there
is a chance that we are mistaken.
Future Plans

Future work includes the following items:
• We plan to make analysis data available to public over

the web by hosting a SPARQL query server connected
to our factbase. Again, this will revolutionize the process
of software analysis because practically anyone in the
world can make contributions without needing expensive
hardware or software. A fine-grained change analysis tool
such as Diff/TS plays a central role in organizing and
comparing analysis results offered by various tools on
each version.

• We are working on the Linux-2.6 kernel source code.
Diff/TS is already capable of analyzing the whole ver-
sions, however, we have not yet tamed a source code
analysis tool for C/C++ except code clone detectors. We
are working on ROSE13 and Clang14 at the moment, both
of which are able to generate call graphs and CFGs.
It is an interesting challenge to host analysis data of
the Linux as it will take much more disk space and
computation power than Ant. Let us mention that Linux
is approximately 70 times larger than Ant in SLOC per
version.

• We plan to reformulate advanced fine-grained analyses
reported in recent papers in a query-based style. We
are working on code smells/churn detection [19], static/
dynamic call graph comparison between revisions [20],
time-dependence analysis of code changes [21], non-
essential change analysis [3], and clone tracking [22].

REFERENCES

[1] B. Adams, Z. M. Jiang, and A. E. Hassan, “Identifying crosscutting
concerns using historical code changes,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume
1, ser. ICSE ’10. New York, NY, USA: ACM, 2010, pp. 305–314.

[2] M. Hashimoto and A. Mori, “Diff/TS: A tool for fine-grained structural
change analysis,” in WCRE ’08: Proceedings of the 15th Working
Conference on Reverse Engineering. Los Alamitos, CA, USA: IEEE
Computer Society, 2008, pp. 279–288.

[3] D. Kawrykow and M. P. Robillard, “Non-essential changes in version
histories,” in Proceedings of the 33rd ACM/IEEE International Confer-
ence on Software Engineering, May 2011, pp. 351–360.

[4] M. Marin, A. V. Deursen, and L. Moonen, “Identifying crosscutting
concerns using fan-in analysis,” ACM Trans. Softw. Eng. Methodol.,
vol. 17, pp. 3:1–3:37, December 2007.

13http://www.rosecompiler.org/
14http://clang.llvm.org/

[5] D. Zhang, Y. Guo, and X. Chen, “Automated aspect recommenda-
tion through clustering-based fan-in analysis,” in Proc. of the 23rd
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE 2008), 2008, pp. 278–287.

[6] T. T. Nguyen, H. V. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Aspect
recommendation for evolving software,” in Proceeding of the 33rd
International Conference on Software Engineering (ICSE ’11). Waikiki,
Honolulu, HI, USA: ACM, May 2011, pp. 361–370.

[7] S. Breu and T. Zimmermann, “Mining aspects from version history,”
in Proceedings of the 21st IEEE/ACM International Conference on
Automated Software Engineering. Washington, DC, USA: IEEE
Computer Society, 2006, pp. 221–230.

[8] D. Jin and J. R. Cordy, “Ontology-based software analysis and reengi-
neering tool integration: the OASIS service-sharing methodology,” in
Software Maintenance, 2005. ICSM’05. Proceedings of the 21st IEEE
International Conference on. IEEE, 2005, pp. 613–616.

[9] S. Tichelaar, S. Ducasse, and S. Demeyer, “FAMIX and XMI,” in
Proceedings of the Seventh Working Conference on Reverse Engineering
(WCRE’00). Washington, DC, USA: IEEE Computer Society, 2000,
pp. 296–298.

[10] O. Nierstrasz, S. Ducasse, and T. Gı̌rba, “The story of Moose: an
agile reengineering environment,” in Proceedings of the 10th European
software engineering conference held jointly with 13th ACM SIGSOFT
international symposium on Foundations of software engineering, ser.
ESEC/FSE-13. New York, NY, USA: ACM, 2005, pp. 1–10.

[11] H. C. Gall, B. Fluri, and M. Pinzger, “Change analysis with evolizer
and changedistiller,” IEEE Software, vol. 26, no. 1, pp. 26–33, Jan-
uary/February 2009.

[12] M. Fischer, M. Pinzger, and H. Gall, “Populating a release history
database from version control and bug tracking systems,” in Proceedings
of the International Conference on Software Maintenance. Washington,
DC, USA: IEEE Computer Society, 2003, pp. 23–32.

[13] J. Bevan, E. J. Whitehead, Jr., S. Kim, and M. Godfrey, “Facilitating
software evolution research with kenyon,” in Proceedings of the 10th
European software engineering conference held jointly with 13th ACM
SIGSOFT international symposium on Foundations of software engi-
neering. New York, NY, USA: ACM, 2005, pp. 177–186.

[14] M. W. Godfrey and L. Zou, “Using origin analysis to detect merging
and splitting of source code entities,” IEEE Transactions on Software
Engineering, vol. 31, no. 2, pp. 166–181, 2005.

[15] J. Rilling, R. Witte, P. Schuegerl, and P. Charland, “Beyond information
silos – an omnipresent approach to software evolution,” International
Journal of Semantic Computing (IJSC), vol. 2, no. 4, pp. 431–468,
December 2008, special Issue on Ambient Semantic Computing.

[16] G. Ghezzi and H. C. Gall, “Sofas : A lightweight architecture for
software analysis as a service,” in Working IEEE/IFIP Conference
on Software Architecture (WICSA 2011), 20-24 June 2011, Boulder,
Colorado, USA. IEEE Computer Society, 2011, p. to appear.

[17] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data - the story so
far,” International Journal on Semantic Web and Information Systems
(IJSWIS), vol. 5, no. 3, pp. 1–23, 2009.

[18] Kiefer, A. Bernstein, and M. Stocker, “The fundamentals of iSPARQL: a
virtual triple approach for Similarity-Based semantic web tasks,” Lecture
Notes In Computer Science, vol. 4825, pp. 295–309, 2007.

[19] C. Kiefer, A. Bernstein, and J. Tappolet, “Analyzing software with
isparql,” in Proceedings of the 3rd International Workshop on Semantic
Web Enabled Software Engineering (SWESE 2007). Springer, June
2007.

[20] R. Holmes and D. Notkin, “Identifying program, test, and environmental
changes that affect behaviour,” in Proceeding of the 33rd international
conference on Software engineering. New York, NY, USA: ACM, 2011,
pp. 371–380.

[21] O. Alam, B. Adams, and A. E. Hassan, “A study of the time dependence
of code changes,” in Proc. of the 16th Working Conference on Reverse
Engineering, WCRE 2009, October 2009, pp. 21–30.

[22] E. Duala-Ekoko and M. P. Robillard, “Clone region descriptors: Repre-
senting and tracking duplication in source code,” ACM Transactions on
Software Engineering and Methodology, vol. 20, no. 1, pp. 1–31, 2010.

